Между
В этой главе чаще, чем в других, упоминаются последние результаты исследований, проводимых лучшими умами современной математики.
Игра в 15 на новый лад
Когда на окраине городка открывается ярмарка, всех от мала до велика охватывает радостное возбуждение (говоря о всех, я имею в виду «всех, кроме коров»).
В этом году в одном из павильонов ярмарки желающие могли сыграть в новую игру, которая так и называется — «игра в 15».
Посмотрим, как играют в 15. Первый ход — дама ставит цент на 7. Поскольку цифра 7 накрыта, ставить на нее в дальнейшем нельзя; ни доллары, ни центы. То же можно сказать и обо всех остальных цифрах: ни одну из них нельзя накрывать монетами дважды, будь то центы или доллары.
Мистер Ярмар ставит доллар на 8.
Дама делает второй ход и ставит цент на 2. Если ей удастся поставить цент на 6, она выиграет.
Мистер Ярмар, желая воспрепятствовать выигрышу партнера, ставит доллар на 6. Он выиграет, если ему удастся поставить доллар на 1.
Дама замечает угрозу и блокирует мистеру Ярмару путь к выигрышу, ставя цент на 1.
Мистер Ярмар с усмешкой ставит доллар на 4. Дама замечает, что если он следующим ходом поставит доллар на 5, то выиграет, и отрезает ему этот путь к выигрышу.
Дама ставит цент на 5.
Но мистер Ярмар ставит доллар на 3 и выигрывает, так как 8 + 4 + 3 = 15. Дама проиграла свои 4 цента.
Мэру города игра в 15 очень понравилась. Пронаблюдав за игрой в течение почти целого дня, он пришел к убеждению, что мистер Ярмар придерживается тайной беспроигрышной стратегии.
Всю ночь напролет мэр пытался разгадать, в чем состоит тайная стратегия мистера Ярмара.
Внезапно мэра озарила поразительная по простоте идея.
Какая идея осенила мэра? Не могли бы вы самостоятельно разработать беспроигрышную стратегию для игры в 15?
Выигрышную стратегию указать нетрудно, если догадаться, что игра в 15 мистера Ярмара математически эквивалентна игре в «крестики-нолики». Установить эквивалентность нам поможет ло-шу — магический квадрат 3x3, впервые открытый в древнем Китае.
Чтобы в полной мере оценить изящество этого магического квадрата, выпишем прежде всего все возможные тройки однозначных чисел (попарно не равных и отличных от нуля), которые в сумме дают 15. Существует 8 таких троек:
1 + 5 + 9 = 15,
1 + 6 + 8 = 15,
2 + 4 + 9 = 15,
2 + 5 + 8 = 15,
2 + 6 + 7 = 15,
3 + 4 + 8 = 15,
3 + 5 + 7 = 15,
4 + 5 + 6 = 15.
Теперь присмотримся повнимательнее к единственному магическому квадрату 3x3:
2 9 4
7 5 3
6 1 8
Если считать, что каждое число вписано в единичный квадрат (составляющий 1/9 от квадрата 3x3), то можно выделить 8 троек единичных квадратов, лежащих: на одной прямой: 3 горизонтали, 3 вертикали и 2 диагонали. Каждая из прямых соответствует одной из троек чисел, дающих в сумме 15. Следовательно, любой набор из 3 чисел, обеспечивающий победу в игре мистера Ярмара, соответствует либо горизонтали, либо вертикали, либо диагонали магического квадрата.
Нетрудно видеть, что любая партия в 15 эквивалентна партии а «крестики-нолики», разыгрываемой на магическом квадрате. У мистера Ярмара имеется магический квадрат, начерченный на листке бумаги, в который он тайком поглядывает. Хотя существует единственный квадрат ло-шу, но его можно повернуть четырьмя разными способами и, если угодно, подвергнуть зеркальному отражению. Любая из 8 разновидностей магического квадрата может служить тайным ключом к гроссмейстерской стратегии при игре в 15.