Чтобы сигнализация подавала звуковой сигнал, можно использовать схему генератора и динамик из эксперимента 11. Хотя на самом деле есть и другие способы. Интегральная микросхема, известная как таймер 555, лучше подойдет для этой работы, но так уж получилось, что она будет следующей темой, о которой я расскажу вам в эксперименте 16.
Таймер 555 способен также удовлетворить пунктам 7 и 9 из технического задания, которые подразумевают задержку перед срабатыванием сигнализации. Поэтому отложим пока проект сигнализации, чтобы полностью завершить его в эксперименте 18.
Итоги
Хотя проект сигнализации еще не завершен, он затронул несколько важных моментов. Я резюмирую их здесь, чтобы ссылаться на них в дальнейшем.
• Транзистор способен обеспечивать высокий выходной сигнал в ответ на низкий входной, и наоборот.
• Реле может блокироваться во включенном состоянии при подаче напряжения на обмотку.
• Диод может препятствовать протеканию тока в тех цепях, где ток не нужен.
• При протекании через диод прямого тока напряжение снижается примерно на 0,7 В.
• Открытый транзистор также снижает напряжение примерно на 0,7 В.
• Падение напряжения на полупроводниковом приборе остается постоянным независимо от величины подаваемого напряжения. Следовательно, эффект более существенен, если подаваемое напряжение низкое.
• Катушка реле при выключении может создавать противоЭДС (выброс обратного тока).
• Защитный диод, подключенный параллельно обмотке реле, способен подавить противоЭДС. Диод должен быть закрыт при нормальном направлении тока и пропускать обратный импульс, созданный катушкой.
Глава 4
Микросхемы, вам слово!
Прежде чем перейти к увлекательной теме интегральных микросхем (часто именуемых
Означает ли это, что вы напрасно потратили время? Конечно, нет! Я уверен, что конструируя схемы из отдельных компонентов, таких как транзисторы и диоды, вы получаете наилучшую возможность понять принципы электроники. Тем не менее, далее вы убедитесь, что микросхемы, содержащие десятки, сотни и тысячи транзисторных соединений, позволяют упростить решение многих задач.
Возможно, вас завлекут игры с микросхемами, но, вероятно, вы не будете столь же одержимы, как персонаж, изображенный на рис. 4.1.
Далее будут описаны дополнительные инструменты, оборудование, компоненты и расходные материалы, которые понадобятся в экспериментах с 16 по 25.
Рис. 4.1. Мой образец для подражания
Комплектующие для четвертой главы
Единственный новый инструмент, который может вам потребоваться для работы с микросхемами, – это логический пробник. Он определит, в каком состоянии находится вывод микросхемы, что поможет понять, как работает ваша схема. Пробник обладает памятью, поэтому он способен реагировать на одиночный импульс, который может оказаться слишком быстрым и незаметным.
Некоторые из моих читателей не согласны со мной, но я считаю логический щуп необязательным инструментом. При желании поищите в интернет-магазинах и купите самый дешевый, какой найдете. У меня нет каких-либо рекомендаций по поводу производителя.
Компоненты
Как и прежде, подробные рекомендации по приобретению комплектующих приведены в
Как выбрать микросхему
На рис. 4.2 показаны две интегральные микросхемы. Вверху изображена устаревшая конструкция со штырьковыми выводами, расположенными на расстоянии 2,54 мм, которые вставляются в отверстия макетной или печатной платы. Я буду пользоваться исключительно такими микросхемами, потому что с ними проще работать. Микросхема, показанная внизу, разработана специально
Рис. 4.2. Микросхема для установки в монтажные отверстия (вверху) и микросхема для поверхностного монтажа (внизу)
Многие микросхемы для установки в отверстия на плате и для поверхностного монтажа сходны по функциям. Единственное различие – это размер (хотя некоторые версии для поверхностного монтажа работают при меньшем напряжении).
Корпус микросхемы обычно делается из пластика или эпоксидной смолы. Обычная микросхема, как правило, поставляется в