Читаем Электроника для начинающих (2-е издание) полностью

Диод – это давно известный полупроводниковый прибор. Электрический ток через диод протекает в одном (прямом) направлении и не протекает в обратном направлении. Как и его более поздний «родственник» – светодиод, диод можно вывести из строя чрезмерным обратным напряжением и слишком большой силой тока, но большинство обычных диодов гораздо более устойчивы к перегрузкам, чем светодиоды. Фактически они выдерживают обратное напряжение до максимального значения, указанного производителем.

Отрицательный вывод диода всегда маркируется, обычно круговой полосой, как показано на рис. 3.25. Этот вывод называется катодом. Другой вывод – это анод, он не помечается. Иногда диоды очень полезны в логических схемах, они также способны преобразовывать переменный ток в постоянный. Выпускаются диоды разных типономиналов. Если максимальный ток или напряжение какого-либо диода недостаточны для ваших целей, замените его на более мощный.

Я рекомендую выбирать диоды, рассчитанные на напряжение не меньше, чем у источника питания. Как и любой полупроводниковый компонент, при неправильном использовании диод может перегреться и выйти из строя.

Три варианта условного обозначения диода приведены на рис. 3.85.

Рис. 3.85. Три варианта условного обозначения диода. Они функционально идентичны

<p>Одна проблема создает другую</p>

Решив проблему самоблокировки реле во включенном состоянии добавлением дополнительного провода, мы создали новую проблему – электрический ток может пойти обратно к транзистору. Мы добавили диод, но при этом возникла еще одна проблема.

Работа диода тоже чего-то стоит, как и работа транзистора. На самом деле, поскольку оба компонента содержат p-n-переход, то затраты оказываются сравнимы. Эффект заключается в снижении напряжения.

Ток поступает в обмотку реле, проходя сначала через транзистор, а затем через диод. После того как реле включится, оно само поддерживает автономную работу, и это не проблема. Но транзистор накладывает «штраф» размером около 0,7 В, а диод накладывает дополнительный «штраф», тоже около 0,7 В, и в сумме потери получаются 1,4 В. Это падение напряжения является фиксированным и не зависит от напряжения источника питания.

Я думаю, что наше реле, рассчитанное на 9 В, должно надежно работать при напряжении 7,6 В. В техническом паспорте компании Ошгоп указано, что для срабатывания рекомендованного мною реле серии G5V-2 достаточно 75 % от подаваемого напряжения, что составляет всего 6,75 В. Похоже, это указанный тип реле подойдет для наших целей.

А как быть с другими реле? Некоторые компоненты имеют более жесткие параметры, чем другие. А если напряжение батареи окажется ниже 9 В? Проектировщик всегда должен учитывать все факторы, и, как правило, следует по возможности выбирать компоненты, номиналы которых наиболее близки к расчетным.

Кое-кто из читателей сообщил мне о проблеме падения напряжения, когда эта схема появилась в первом издании книги. (Да, я уделяю внимание откликам читателей.) Тогда я рекомендовал источник питания напряжением 12 В и считал, что потери в размере 1,4 В на транзисторе и диоде приемлемы. Но для этого издания я решил, что все устройства должны работать от источника питания напряжением 9 В, чтобы не пришлось покупать сетевой адаптер и вы могли бы использовать только батареи на 9 В, если вам так нравится. К сожалению, изъятие 1,4 В из 9 В может привести к неприятностям.

Вы убедились, что любое решение приводит к разным последствиям. Теперь, когда выбран источник питания на 9 В, я думаю, что необходим лучший способ самоблокировки реле.

<p>Решение проблемы</p>

Первый этап решения проблемы – четко понять, в чем ее суть.

Задачу управления сигнализацией осуществляют одновременно два компонента: транзистор и реле. Транзистор обеспечивает срабатывание сигнализации. После этого транзистор не делает ничего. Он выключен, а самоблокировку обеспечивает только реле. Слабым местом в этой системе является то, что задача разделена между двумя компонентами, и они могут конфликтовать друг с другом. Лучшим решением мог бы стать один компонент, отвечающий за все. Мне хотелось бы сохранить контролирующую роль за транзистором. Он должен поддерживать себя во включенном состоянии неограниченное время, а пока он будет включен, то и реле останется включенным.

Рис. 3.86. Цепь датчиков теперь заземлена через правые контакты реле, которые нормально замкнуты

И вот теперь я понимаю, как решить проблему. Все, что нужно, – это задействовать второй полюс реле (это то же самое реле, которое вы исследовали в эксперименте 7). С помощью второй пары контактов реле, которые нормально замкнуты, можно заземлить цепь датчиков, как показано на рис. 3.86.

Перейти на страницу:

Похожие книги

Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника