Читаем Электроника для начинающих (2-е издание) полностью

• Когда транзистор выключается, его эффективное внутреннее сопротивление увеличивается как минимум до 5 кОм. Вследствие этого любой компонент, подключенный к коллектору, больше не заземляется через транзистор и может накапливать положительный заряд.

<p id="bookmark179">Работа устройства шаг за шагом</p>

Я начну с произвольного момента, когда питание уже подано. После того как мы рассмотрим полный рабочий цикл, я вернусь к вопросу о том, откуда изначально берутся колебания.

Давайте предположим, что на снимке 1 транзистор Q1 был только что выключен, а транзистор Q2 только что включился. Нижний (по схеме) конец резистора rl был заземлен через транзистор Q1, но теперь транзистор Q1 отключен, напряжение на его коллекторе начинает расти, и за счет этого увеличивается напряжение на левой (по схеме) обкладке конденсатора С1. Напряжение на базе транзистора Q1 также возрастает, но не так стремительно, потому что резистор R2 имеет более высокий номинал. Между тем, поскольку транзистор Q2 включен, он потребляет ток через резистор R2, понижая напряжение. Через базу транзистора Q2 также течет ток к шине заземления. Это исходная ситуация. Что дальше?

На снимке 2, показанном на рис. ЦВ-2.108, напряжение на базе транзистора Q1 увеличилось достаточно, чтобы он начал включаться. Теперь он отводит ток от конденсатора С1, а также через свою базу, и эти провода сейчас выделены синим цветом. Резкое изменение напряжения на левой обкладке конденсатора С1 мгновенно вызывает аналогичное снижение на его правой обкладке (см. эксперимент 9). При этом напряжение на правой обкладке конденсатора С1 оказывается ниже нуля, что изображено белым проводом. Транзистор Q2 сразу же выключается из-за отрицательного смещения на его базе.

На снимке 3, показанном на рис. ЦВ-2.109, транзистор Q.1 по-прежнему включен, а транзистор Q2 все еще выключен. Это зеркальное отображение снимка 1. Конденсатор С1 начинает заряжаться в противоположном направлении, через резистор R1. Постепенно это повышает напряжение на базе транзистора Q2.

На снимке 4, изображенном на рис. ЦВ-2.110, транзистор Q2 начинает проводить ток, заземляя правую обкладку конденсатора С2. В результате напряжение на левой обкладке конденсатора С2 оказывается ниже нуля и транзистор Q.1 выключается из-за отрицательного смещения на базе. Это зеркальное отображение снимка 2.

Рис. ЦВ-2.108. Снимок 2Рис. ЦВ-2.109. Снимок 3Рис. ЦВ-2.110. Снимок 4. Далее цикл повторяется

После снимка 4 цикл повторяется, начиная со снимка 1. Если добавить еще один транзистор и светодиод (как на рис. 2.106), то светодиод оказался бы включенным на снимках 1 и 4.

<p id="bookmark180">Разделительный конденсатор</p>

Как вы видите, работа генератора колебаний довольно сложна для понимания. Однако данная схема распространена очень широко. Если вы поищите в картинках Google «генератор», то скорее всего найдете именно этот вариант. Тем не менее, многие люди испытывают трудности при изучении подобной схемы.

Главное состоит в том, что на снимках 2 и 4 резкое падение напряжения на одной обкладке конденсатора вызывает эквивалентное падение напряжения на другой обкладке — эффект, который вы наблюдали в эксперименте 9.

<p id="bookmark181">Как возникают колебания</p>

Обратите внимание то, что рассмотренная схема симметрична. Когда вы подаете питание, почему бы обоим транзисторам не стать включенными или выключенными?

В идеальном мире, где два транзистора или два резистора могут быть абсолютно идентичными, такая схема окажется полностью симметричной. Но в реальности существует небольшое различие между резисторами и конденсаторами, вызванное производственными причинами, в результате чего один транзистор начинает проводить ток раньше другого. Как только это происходит, устройство выходит из равновесия и начинаются колебания.

Еще один вопрос, который требует пояснений, — откуда снимать выходной сигнал в схеме генератора? Заметьте, что в исходной схеме резисторы r1 и r2 имеют намного меньшие номиналы, чем резисторы R1 и R2. В результате напряжение на левой обкладке конденсатора С1 быстро достигнет почти величины питающего напряжения — и правая обкладка конденсатора С2 будет вести себя так же. Таким образом, мы можем получить широкий диапазон напряжений в любой из этих точек. Я выбрал левую обкладку просто потому, что здесь легче встроить в схему дополнительные компоненты.

Если из схемы отводится слишком много тока, это замедлит процесс заряда конденсатора и отразится на синхронизации и равновесии генератора. Поэтому я подавал выходной сигнал через резистор номиналом 100 кОм на базу другого транзистора. Базовый ток этого транзистора очень мал, но за счет усиления амплитуда сигнала на его выходе окажется достаточной для практического использования.

<p id="bookmark182">К чему такие сложности?</p>
Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки