Читаем Электроника для начинающих (2-е издание) полностью

Рис. 2.99. Номиналы компонентов, установленных на макетной плате

Взглянем на схему, изображенную на рис. 2.98, где показаны те же соединения, что и на макетной плате, но в более понятном виде. Номиналы компонентов указаны на рис. 2.99.

Потенциометр подключен между положительной и отрицательной шинами питания. При таком подключении он работает в качестве делителя напряжения. Когда движок находится на одном конце дорожки, он подключается непосредственно к положительному полюсу источника питания. На другом конце дорожки он подключен напрямую к отрицательному заземлению. В промежуточных положениях он делит напряжение источника питания в некоторой пропорции. Потенциометры часто включают таким способом.

Я уже упоминал, что светодиод не зажигается, когда вы только начинаете перемещать движок потенциометра от минуса к плюсу. Наверное, вы считаете, что он не получает достаточно энергии? Не совсем так. Биполярный транзистор «удерживает» часть энергии в качестве «платы» за свои услуги. Он не будет реагировать, если напряжение на базе не станет выше, чем напряжение на эмиттере примерно на 0,7 В. Говорят, что в таком режиме транзистор обладает положительным смещением. Сказанное иллюстрирует рис. 2.100.

Рис. 2.100. Основное правило использования n-p-n-транзистора<p id="bookmark170">Напряжение или сила тока?</p>

Вы видели, что напряжение на базе биполярного транзистора управляет выходным током этого транзистора. Означает ли это, что транзистор усиливает напряжение?

Вы можете выяснить это самостоятельно. Возьмите мультиметр, настройте его на измерение напряжения и соедините отрицательный щуп с отрицательной шиной макетной платы тестовым проводом, как показано на рис. 2.101. Прикоснитесь красным щупом к выводу эмиттера транзистора, запишите напряжение и переместите щуп на вывод базы. Я гарантирую, что напряжение на эмиттере будет ниже, чем на базе.

Рис. 2.101. Макет установки для выяснения вопроса, усиливает ли транзистор напряжение

Установите подстроечный потенциометр в другое положение и попробуйте снова. Независимо от того, насколько вы изменили напряжение на выводе базы, напряжение на выводе эмиттера всегда будет ниже.

Возможно, это вызвано тем, что резистор с номиналом 470 Ом не обеспечивает достаточного сопротивления между эмиттером транзистора и отрицательной шиной? Мог ли резистор понизить напряжение?

Давайте разбираться. Удалите светодиод и резистор 470 Ом, включив между эмиттером транзистора и отрицательным заземлением резистор с номиналом 1 МОм. Картина не сильно изменилась. Напряжение на эмиттере по-прежнему будет ниже, чем на базе.

Если у вас возникнет желание проверить силу тока на базе и на выходе эмиттера, то выяснится нечто совсем другое. Для этого опыта следует установить мультиметр на измерение силы тока в миллиамперах и встроить его в схему на соответствующем участке. Вспомните о том, что для измерения силы тока его необходимо пропустить через мультиметр.

Однако я могу заранее сказать вам, что вы обнаружите. Этот конкретный транзистор усиливает ток, поступающий на базу, с коэффициентом более 200:1. Данная величина называется коэффициентом передачи тока Ддля транзистора.

В итоге мы пришли к фундаментальному факту: биполярный транзистор усиливает ток, а не напряжение.

В моей книге Make: More Electronics вы найдете больше сведений по рассматриваемой теме. Здесь я упоминаю об этом лишь вкратце.

Теперь, в качестве справки для вас, я подытожу сведения о биполярных транзисторах.

<p>Все о n-p-n и p-n-p-транзисторах</p>

Транзистор — это полупроводниковый прибор, а полупроводник представляет собой нечто среднее между проводником и изолятором. Эффективное внутреннее сопротивление транзистора меняется в зависимости от напряжения, которое вы подаете на его базу.

Все биполярные транзисторы имеют три вывода: коллектор, базу и эмиттер, которые в технических паспортах обозначаются латинскими буквами С, В и Е[9].

• Транзисторы n-p-n-типа открываются положительным напряжением на базе по отношению к эмиттеру.

• Транзисторы p-n-p-типа. открываются отрицательным напряжением на базе по отношению к эмиттеру.

В закрытом (неактивном) состоянии оба транзистора прерывают ток между коллектором и эмиттером подобно однополюсному реле на одно направление с нормально разомкнутыми контактами. (На самом деле транзисторы пропускают очень слабый ток, называемый током утечки.)

Расположение транзистора на схемах может быть различным. Эмиттер может быть вверху, а коллектор внизу или наоборот. База может быть слева или справа, в зависимости того, что было удобнее тому, кто рисовал схему. Внимательно смотрите на стрелку транзистора, чтобы понять к какому типу он относится: n-p-n или p-n-p. Помните, что вы можете повредить транзистор, если подключите его неправильно.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки