Читаем Электроника для начинающих (2-е издание) полностью

Рис. 1.45. Лапки потенциометра отогнуты вверх и наружуРис. 1.46. Корпус потенциометра разобран (кружком выделен движок)

В большинстве потенциометров в качестве скрепляющих элементов используются металлические лапки. Вам нужно отогнуть эти лапки вверх. Первый способ это сделать — подсунуть нож и действовать им как рычагом. Второй способ — применить отвертку или какие-либо кусачки. Я не указал никаких инструментов для этого эксперимента, потому что надеюсь, что у вас в доме есть нож, отвертка или кусачки.

На рис. 1.44 три лапки обведены окружностями (четвертая лапка скрыта за осью компонента). На рис. 1.45 лапки отогнуты вверх и наружу.

После того, как вы отогнули лапки, очень аккуратно потяните за вал, придерживая корпус потенциометра другой рукой. Он должен отделиться, как показано на рис. 1.46.

Внутри корпуса вы увидите круговую дорожку. В зависимости от того, дешевый ли у вас потенциометр или же более высокого класса, дорожка может быть выполнена из проводящего пластика или из тонкого провода, намотанного в виде спирали, как показано на фотографии. В любом случае, принцип работы одинаковый. Провод или пластик обладают некоторым сопротивлением (в общей сложности 1000 Ом для потенциометра номиналом 1 кОм), по мере поворота оси движок соприкасается с резистивной частью и обеспечивает соединение любой точки и центрального вывода. На рис. 1.46 движок потенциометра обведен окружностью.

Возможно, вам удастся снова собрать потенциометр, но если это не получилось, возьмите запасной.

<p>Исследование потенциометра</p>

Настройте ваш мультиметр на измерение сопротивления (минимум 1 кОм на мультиметре с ручным выбором диапазона) и коснитесь щупами двух соседних контактов, как показано на рис. 1.47. Вы должны обнаружить, что при вращении вала потенциометра по часовой стрелке (если смотреть сверху) его сопротивление уменьшается почти до нуля. Когда вы вращаете вал против часовой стрелки, сопротивление увеличивается вплоть до 1 кОм. Теперь черный щуп оставьте на месте, а красным коснитесь противоположного контакта. Потенциометр будет вести себя наоборот.

Возможно, у вас появилось предположение, что центральный контакт соединен с движком внутри потенциометра, а другие два контакта подключены к концам дорожки. Ваша догадка правильна!

Если вы поменяете местами красный и черный щупы, то сопротивление между ними не изменится. Оно одинаково в обоих направлениях. В отличие от светодиода, который необходимо подключать, соблюдая полярность, потенциометр не имеет полярности.

Внимание!

Когда вы пытаетесь измерить сопротивление, не подключайте цепь к источнику питания. При измерении сопротивления мультиметр использует небольшое напряжение от внутренней батареи. Вы же не хотите, чтобы внешнее подаваемое напряжение противодействовало тому, которое поступает от мультиметра.

Рис. 1.47. Исследование поведения потенциометра<p>Уменьшение яркости светодиода</p>

Теперь воспользуемся потенциометром для регулировки яркости светодиода. Соедините все в точности так, как показано на рис. 1.48. Убедитесь, что два зажима типа «крокодил» присоединены к указанным контактам. Теперь вы подключили переменное сопротивление (т. е. потенциометр) там, где в эксперименте 3 располагался обычный резистор (см. рис. 1.42).

Внимание!

Впереди эксперимент, требующий осторожности. Я много раз проводил описанный далее эксперимент без всяких происшествий, но один читатель сообщил, что его светодиод потрескался. Если вы желаете подстраховаться, можно надеть защитные очки. Обычные очки тоже подойдут.

Рис. 1.48. Регулировка яркости светодиода при помощи потенциометра
Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки