Читаем Электроника для начинающих (2-е издание) полностью

Я уже упоминал, что вы можете проверить номинал резистора с помощью мультиметра. Это действительно очень просто. Процесс измерения показан на рис. 1.43. Вначале не забудьте установить мультиметр в режим измерения сопротивления. Отключите резистор от других компонентов и прикоснитесь к нему щупами мультиметра. Если у вас мультиметр с ручным выбором диапазона, вы должны установить значение выше, чем ожидаете увидеть. В противном случае вы получите сообщение об ошибке.

Следует помнить о том, что вы получите более точные показания, если крепко прижмете щупы непосредственно к выводам резистора. Но не касайтесь резистора и щупов пальцами — вы же не хотите измерить сопротивление вашего тела вместе с сопротивлением резистора. Положите резистор на какую-нибудь площадку из изолирующего материала, например, на неметаллическую поверхность стола. Держите щупы за пластиковые рукоятки и сильно прижмите металлические кончики.

Рис. 1.43. Определение номинала резистора

Кроме того, вы можете использовать пару тестовых проводов. Прикрепите один из концов такого провода к выводу резистора, а затем присоедините другой конец провода к щупу мультиметра. Теперь вы можете проводить измерение резистора без участия рук, что гораздо удобнее.

<p>Странные числа</p>

После проверки нескольких резисторов (или их покупки в Интернете) вы заметите, что одни и те же пары цифр могут повторяться. В ряду номиналов порядка тысяч ом часто можно встретить значения 1,0 кОм, 1,5 кОм, 2,2 кОм, 3,3 кОм, 4,7 кОм и 6,8 кОм. Среди резисторов с номиналами порядка десятков тысяч ом мы обнаружим 10 кОм, 15 кОм, 22 кОм, 33 кОм, 47 кОм и 68 кОм.

Подобные пары цифр называются множителями, потому что вы можете умножить их на 1, или на 1000, или на 10 000, или на 100, или на 10, чтобы получить основные номиналы резисторов в омах.

Этому есть логическое объяснение. Давным-давно многие резисторы имели допуск 20%, и поэтому резистор с номиналом 1,0 кОм мог иметь фактическое сопротивление до 1 + 20% = = 1,2 кОм, в то время как резистор номиналом 1,5 кОм мог иметь сопротивление вплоть до 1,5 кОм - 20% = 1,2 кОм. Поэтому было бессмысленно указывать номинал между 1 и 1,5 кОм. Аналогично, резистор 68 Ом мог иметь номинал до 68 + 20% = 80 Ом, в то время как резистор 100 Ом мог иметь номинал вплоть до 100 - 20% = 80 Ом. Поэтому был нецелесообразен номинал между 68 и 100.

Числа в верхней строке табл. 1.4 — это стандартные множители для резисторов. Эти значения широко распространены и сегодня, несмотря на то, что современные резисторы обладают допуском в 10% или меньше.

Если вы возьмете все числа из первой и третьей строки табл. 1.4 (выделены полужирным шрифтом), то получите все возможные множители для резисторов с допуском 10%. Если затем вы добавите цифры из второй и четвертой строк табл. 1.4, то получите все возможные варианты для резисторов с допуском 5%.

Таблица 1.4

При создании устройств, описанных в данной книге, вам понадобится только шесть стандартных множителей из табл. 1.4. Это сделано специально, чтобы уменьшить требуемый набор резисторов. Если важна точность (например, в эксперименте 19, где схема определяет скорость ваших рефлексов), то подобрать сопротивление можно с помощью потенциометра. Как это сделать, я покажу уже в следующем эксперименте.

<p>Компоненты, которые еще пригодятся</p>

В следующем эксперименте вам снова потребуется батарея и светодиод. Резисторы тоже пригодятся в будущем.

<p>Эксперимент 4. Переменное сопротивление</p>

Изменять сопротивление в цепи можно с помощью потенциометра. Этот компонент поможет точно выставить силу тока. Поэкспериментировав с потенциометром вы лучше поймете взаимосвязь между напряжением и силой тока. Вы также научитесь читать технический паспорт, поставляемый производителем.

<p>Что вам понадобится</p>

• Батарея 9 В (1 шт.)

• Резисторы: 470 Ом (1 шт.) и 1 кОм (1 шт.)

• Стандартные светодиоды (2 шт.)

• Тестовые провода с зажимами «крокодил» на каждом конце (4 шт.)

• Потенциометр на 1 кОм, линейный (2 шт.)

• Мультиметр (1 шт.)

<p>Как устроен потенциометр</p>

Для начала мне хотелось бы, чтобы вы поняли, как устроен потенциометр, и самый лучший способ это сделать — разобрать его корпус. Вот почему я попросил вас подготовить два потенциометра для этого эксперимента — на тот случай, если вы не сможете снова собрать первый.

Некоторые читатели первого издания книги жаловались на то, что неразумно пытаться разобрать потенциометр, рискуя сломать его. Но почти в любом процессе обучения подразумевается расход каких-либо ресурсов, от ручек и бумаги до маркеров для доски. Если вы действительно не хотите рисковать вашим потенциометром, то можете оставить его в целости и сохранности и изучать конструкцию по приведенным далее фотографиям.

Рис. 1.44. Лапки, которые скрепляют потенциометр
Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки