Читаем Эксперимент, Теория, Практика. Статьи, Выступления полностью

До сих пор во всех известных мне энциклопедиях и курсах физики не было отмечено, что идея этих опытов уже высказана Максвеллом в его «Трактате». Максвелл допускает, что электрический ток может обладать инертной массой, и приводит два эксперимента, осуществленных им для ее обнаружения. В «Трактате» они описаны в §§ 574 и 575.

На рисунке на стр. 241 воспроизведено изображение прибора, на котором поставлен опыт в 1861 г. Горизонтально расположен железный цилиндр А, который можно намагничивать, пропуская ток через окружающую его обмотку. Он подвешен, как обычно подвешивается маховик в гироскопе. Всю эту систему можно было вращать около вертикальной оси. Если бы при намагничивании железный цилиндр приобретал механический момент, его ось должна была бы поворачиваться по направлению вертикальной оси вращения. Этот поворот магнита можно заметить, наблюдая за диском С, половина которого окрашена в красный цвет, другая — в зеленый. При вращении диск, благодаря смешению цветов, выглядит белым. Если намагниченный цилиндр начнет поворачиваться, в центре диска появится зеленое либо красное пятно, в зависимости от направления поворота.

Когда я был в Кембридже, в Кавендишской лаборатории, я нашел этот прибор в одном из шкафов со старыми приборами. Как нетрудно видеть, идея этого опыта весьма близка к эксперименту Барнетта.

Устройство для другого опыта Максвелла воспроизведено на рисунке на стр. 242. Это свободно подвешенная горизонтальная катушка, через которую по подвесам пропускают ток. По зайчику от зеркала, прикрепленного к катушке, Максвелл пытался обнаружить колебания катушки при пропускании через нее тока. Этот опыт по идее совпадает с опытом Эйнштейна — де Хааза. Максвелл в своем «Трактате» пишет, что в обоих опытах ему не удалось обнаружить механический момент, связанный с прохождением тока. Зная теперь действительную величину эффекта, мы вполне понимаем, что в опытах Максвелла на несколько порядков не хватило чувствительности, необходимой, чтобы обнаружить эффект.

Как известно, ни Барнетту, ни Эйнштейну и де Хаазу из-за трудности эксперимента сначала не удалось правильно определить отношение магнитного момента к механическому. Впоследствии, при правильном определении этого соотношения, оно оказалось в два раза больше ожидавшегося. Этот неожиданный результат оказался чрезвычайно важным для установления спиновой природы самого электрона.

Я вспомнил об этих опытах, так как думаю, что справедливость требует хотя бы раз в сто лет отметить участие идей Максвелла в этих исследованиях.

В 1921 г. я приехал в Англию и стал научным сотрудником Кавендишской лаборатории, которой руководил Резерфорд. Одна из первых моих работ возникла из идеи наблюдать пробег а-частиц в камере Вильсона в магнитном поле, чтобы по изгибам треков можно было мерить скорость каждой отдельной частицы. До того времени камера Вильсона вообще не помещалась в магнитное поле. Для этих опытов нужно было еще найти метод создания сильного магнитного поля, по величине близкого к 100 кэ, и создать его в катушке достаточных размеров, чтобы в это магнитное поле можно было поместить камеру Вильсона. Технически все это казалось осуществимым, так как время, за которое образовывались треки в камере, составляло ничтожные доли секунды и, следовательно, магнитное поле должно было существовать короткое время. Это снимало основную трудность создания сильных магнитных полей — перегрев катушки.

Легко было подсчитать, что за время в несколько сотых долей секунды, в продолжение которого по катушке должен был идти ток, обмотка благодаря своей теплоемкости нагревалась не более чем на 100°. Главная трудность была связана с необходимостью получить мощный импульсный источник электроэнергии.

В те времена электротехника не располагала, как теперь, конденсаторами большой емкости. Мы вышли из затруднения, построив специальную аккумуляторную батарею, состоявшую из свинцовых пластин. Зазор между ними был порядка 1—2 мм и заполнялся серной кислотой. Такая аккумуляторная батарея обладала малой емкостью и малым внутренним сопротивлением. Она давала нам в импульсах необходимую мощность в 200—300 кет. Все это удалось осуществить, и опыты окончились удачно. Изогнутые треки а-частиц были получены и их кривизна была промерена. До сих пор изучение пробегов заряженных частиц в камере Вильсона в магнитном поле остается мощным методом познания радиоактивных процессов.

После этого я начал применять импульсный метод получения мощных магнитных полей для изучения магнитных свойств вещества. Хотя это направление не совпадало с основной тематикой Кавендишской лаборатории, Резерфорд все же благожелательно относился к нему и предоставил мне все необходимое для развития этих исследований.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука