Читаем Эксперимент, Теория, Практика. Статьи, Выступления полностью

«Трактат» сейчас воспринимается очень легко и его чтение доставляет большое эстетическое удовольствие, но прежде, даже лет через 15—20 после его опубликования, он воспринимался с трудом. Это хорошо видно из опубликованных в 1891 г. лекций Людвига Больцмана по максвелловской теории (L. Bolzmann, Vorlesungen uber die Maxwellische Theorie, Lpz., 1891). Даже для такого большого ученого, каким был Больцман, в те времена восприятие максвелловского учения об электромагнитном поле давалось с большим трудом. Это видно из того, как он пытался конкретизировать механическими моделями динамику процессов, происходящих в электромагнитном поле. Одна из этих моделей, которые Больцман приводит в своих лекциях, изображена на рисунке на стр. 238. Я думаю, что сложность ее конструкции, даже без детального рассмотрения, достаточна, чтобы продемонстрировать трудность, с которой Больцман воспринимал теорию Максвелла.

Теперь восприятие максвелловского представления об электромагнитном поле не вызывает трудностей. Экзаменуя студентов, я неизменно обнаруживаю, что они лучше знают и понимают электромагнитные процессы, чем, например, механику гироявлений. По-видимому, это связано с тем, что они начинают еще в юности знакомиться с радиоприемниками и телевизорами. Некоторые преподаватели сейчас предлагают делать обратное тому, что делал Больцман, т. е. изучать механику на основе электродинамики.

Я надеюсь, что вы согласитесь со мной, что нашей конференции следует, если и не особо отметить эту юбилейную дату, то, во всяком случае, вспомнить о роли «Трактата».

Приведенный пример с взаимодействием зарядов поучителен еще по одной причине: из него непосредственно следует, что всегда магнитное поле Н создается зарядами, движущимися по отношению к наблюдателю.

Следовательно, изучая магнитное поле, создаваемое намагниченными телами, можно определить положение и движение зарядов в материальной среде. Это есть один из основных и могущественных методов познания электрической природы материи. Этому и посвящено исследование магнитных явлений.

Согласно выражению (3), поле, создаваемое движущимся зарядом, обратно пропорционально квадрату расстояния и пропорционально скорости его движения. Это как бы обобщает закон Био — Савара для элемента электрического тока, открытый еще в 1820 г. Справедливость этого обобщения нуждается в прямой экспериментальной проверке. Оказалось, что сделать это непосредственно и точно — трудная экспериментальная задача. Это вызвано тем, что согласно выражению (3), магнитное поле пропорционально отношению скорости движения заряда и к скорости света с. Поскольку скорость и надо создавать механическим движением, то по сравнению со скоростью света она весьма мала и поэтому поле, которое надо мерить, тоже очень мало.

Первый, кому удалось это осуществить (1876 г.), был Роуланд — один из искуснейших экспериментаторов того времени. Ему удалось проверить этот закон, но только весьма приближенно. Потом лучший результат получил Рентген (1885 г.). Но наиболее точные результаты были получены А. А. Эйхенвальдом в 1903— 1904 гг. в опытах, проведенных в Московском университете. Когда был открыт электрон и определена его масса, то ускоряя электроны в заданном электрическом поле при их свободном движении в вакууме, получили возможность точно определять их скорость. Таким путем измеряя магнитное поле, создаваемое пучком электронов, А. Ф. Иоффе в 1911 г. с хорошей точностью проверил закон Био — Савара.

Открытие, что носители тока — электроны кроме заряда обладают еще определенной массой, привело к важному выводу, что всякое намагниченное тело, если его магнитный момент создается движением электронов, должно обладать гиромеханическим моментом и отношение этих моментов равно е/2т. В 1908 г. Ричардсон указал, что это отношение можно проверить экспериментально по измерению гиромомента, но поскольку даже у намагниченного железа он очень мал, то экспериментально его наблюдать очень трудно. В 1914 г. экспериментально это удалось сделать Барнетту. Опыт заключался в следующем: если вращать железный цилиндр и считать, что атомы железа являются как бы гироскопами, то направления их моментов, так же как это происходит с обычным гироскопом, будут отклоняться в направлении оси вращения. Следовательно, цилиндр должен приобретать в том же направлении магнитный момент. Барнетту удалось наблюдать этот эффект. Эксперимент был очень трудным, так как намагничивание было очень мало, поэтому достаточно точно он его измерить не смог. Другой путь — найти отношение магнитного момента к гиромоменту был осуществлен опытом, носящим имя Эйнштейна — де Хааза. Эксперимент заключался в том, что при периодическом перемагничивании свободно подвешенного ферромагнитного цилиндра должны возникать крутильные колебания, измерив которые, можно определить отношение е/2т. Этот опыт тоже требует большого экспериментального искусства, он был осуществлен в Лейдене в 1915 г., но точность его результатов сперва также была низкой.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука