Чтобы взглянуть на TMP с другого боку, посмотрим, как там выглядят циклы. Технология TMP не предоставляет настоящих циклических конструкций, поэтому цикл моделируется с помощью рекурсии. (Если вы не очень уверенно владеете рекурсией, придется освоиться с ней прежде, чем приступать к использованию TMP. Ведь TMP – по существу функциональный язык, а для таких языков рекурсия – то же, что телевидение для американской поп-культуры – неотъемлемая принадлежность.) Но и рекурсия-то не совсем обычная, поскольку при реализации циклов TMP нет рекурсивных вызовов функций, а есть рекурсивные
Аналогом программы «Hello World» на TMP является вычисление факториала во время компиляции. Конечно, она, как и «Hello World», не поразит воображение, но обе полезны для демонстрации базовых возможностей языка. Вычисление факториала с помощью TMP сводится к последовательности рекурсивных конкретизаций шаблона. Кроме того, демонстрируется один из способов создания и использования переменных в TMP. Смотрите:
template
struct Factorial { // произведение n и Factorial
enum { value = n*Factorial
};
template<> // частный случай: значение Factorial<0> –
struct Factorial<0> { // это 1
enum { value = 1 };
};
Имея такую шаблонную метапрограмму (на самом деле просто единственную шаблонную метафункцию Factorial), вы получаете значение факториала n, обращаясь к Factorial
Циклическая часть кода возникает там, где конкретизация шаблона Factorial
Каждая конкретизация шаблона Factorial является структурой struct, и в каждой структуре используется «трюк с перечислением» (см. правило 2) для объявления переменной TMP с именем value. В переменной value хранится текущее значение факториала. Если бы в TMP были настоящие циклы, то значение value обновлялось бы на каждой итерации цикла. Но поскольку в TMP место циклов заменяет рекурсивная конкретизация шаблонов, то каждая конкретизация получает свою собственную копию value, и значение копии соответствует «итерации цикла».
Использовать Factorial можно следующим образом:
int main()
{
std::cout << Factorial<5>::value; // печатается 120
std::cout << Factorial<10>::value; // печатается 3628800
}
Если вы находите описанный прием элегантным, значит, вы стали на путь превращения в метапрограммиста шаблонов. Если же все эти шаблоны, специализации, рекурсивные конкретизации, трюк с перечислением и необходимость набирать нечто вроде Factorial
Конечно, шаблон Factorial в такой же мере демонстрирует полезность TMP, как «Hello World» – полезность любого обычного языка программирования. Чтобы понять, почему о TMP стоит знать, важно представлять себе, чего можно достичь с помощью этой технологии. Вот три примера:
• Обеспечение корректности единиц измерения. В научных и инженерных приложениях важно, чтобы единицы измерения (например, массы, расстояния, времени и т. п.) правильно сочетались. Присваивание переменной, представляющей массу, значения переменной, представляющей скорость, – это ошибка, но деление переменной расстояния на переменную времени и присваивание результата переменной скорости правильно. Используя TMP, можно обеспечить (во время компиляции), что все комбинации единиц измерения в программе будут корректны, независимо от того, насколько сложны вычисления. (Это пример того, как можно использовать TMP для ранней диагностики ошибок.) Одним интересным аспектом такого использования TMP может быть поддержка вычисления дробных степеней. Смысл в том, чтобы дроби сокращались во время компиляции, то есть чтобы компилятор мог подтвердить, например, что единица времени в степени 1/2 – это то же самое, что единица времени в степени 4/8.
• Оптимизация операций с матрицами. В правиле 21 объясняется, что некоторые функции, включая operator*, должны возвращать новые объекты, а в правиле 44 представлен класс SquareMatrix, поэтому рассмотрим такой код:
typedef SquareMatrix