Читаем До предела чисел. Эйлер. Математический анализ полностью

Ада Байрон (1815-1852), впоследствии вышедшая замуж за Уильяма Кинга и ставшая известной как Ада Кинг, графиня Лавлейс, была дочерью лорда Байрона. Однако она никогда не знала отца, поскольку родители развелись меньше чем через месяц после ее рождения. Аде ничто не мешало развивать математические способности, так как ее мать считала математику мощным противоядием от возможных склонностей к литературе: глубокая ненависть к бывшему мужу и его работе сопровождала ее всю жизнь. Главную роль в научной деятельности Ады сыграл знаменитый математик Чарльз Бэббидж (1791-1871), создатель первого компьютера в истории. Ада же сделала для этой машины рекурсивный алгоритм, который позволял вычислять числа Бернулли. С точки зрения информатики процедура, придуманная Адой, является самой настоящей компьютерной программой, первой в истории. В 1980-х годах министерство обороны США в честь женщины-ученого дало имя АДА универсальному языку программирования по стандарту MIL-STD-1815 (номер соответствует году рождения Ады).

Вычислительная машина Чарльза Бэбиджа, для которой Ада Кинг создала программу для вычислений чисел Бернулли.

Действительно, первое программное обеспечение в истории (то есть первая программа для автоматических вычислений компьютером) находило числа Бернулли рекурсивным методом. Его создала Августа Ада Кинг, графиня Лавлейс, в 1843 году для механического компьютера Чарльза Бэббиджа, и оно действительно оказалось безупречным с точки зрения информатики. Нечетные значения (n) очень трудно вычислить, и даже сегодня над ними продолжают работать. Очевидно, что первое из них совпадает с гармоническим рядом

(1) = 1 + 1/2 + 1/3 + ... = .

Третье число, иррациональное, было названо постоянной Апери:

(3) = 1 + 1/23 + 1/33 + 1/43 + ... + 1/n3 + ... = 1,2020569...

Эйлер сделал еще один шаг вперед, фактически в будущее. Он еще больше углубился в изучение дзета-функций и, следовательно, в область простых чисел, преобразовывая бесконечную сумму своей функции (n) в результат, включающий простые числа. Желающие могут проследить за рассуждениями Эйлера более подробно в приложении 3.

МОСТЫ КЕНИГСБЕРГА

В начале 1735 года Эйлер серьезно заболел. Из источников, которыми мы располагаем, невозможно установить природу этой болезни, мы знаем только, что у него поднялась такая высокая температура, что он находился между жизнью и смертью. После выздоровления Эйлера поздравил от себя и от имени математиков всего мира Даниил Бернулли, признавшись: "Никто уже не надеялся, что он поправится". После этого случая у Эйлера ухудшилось зрение на правом глазу, а три года спустя он полностью на него ослеп. Тем не менее ученый продолжил работать в таком же ритме и год спустя занялся задачей, совершенно отличной от тех, что он решал до этого, — проблемой мостов Кенигсберга. Некоторые математики считают ее решение вершиной научных открытий Эйлера. Дело в том, что эта геометрическая задача не кажется геометрической, поскольку не содержит ни одной известной фигуры или каких-либо величин; в ней даны только определенные линии и точки, и рассуждать можно только о том, как дойти от одной до другой. Это необычная задача о необычном предмете.

Гравюра, Кенигсберг во времена Эйлера, на которой выделены семь мостов.

Кенигсберг, стоящий на берегу Балтийского моря, во времена Эйлера был частью Восточной Пруссии. Сегодня этот город называется Калининградом, он увеличился в размерах и находится на территории России, в географическом анклаве между Польшей и Литвой, образованном в результате войн.

Перейти на страницу:

Похожие книги