Читаем Для юных физиков полностью

<p>5. Немного геометрии на спичках</p>

Горизонтально и вертикально

Задача 32-я

Попросите товарища положить на стол одну спичку горизонтально. Он положит, разумеется, так:

Рис. 44.

Затем попросите его положить возле первой спички вторую спичку вертикально. Сделает он это примерно так:

Товарищ ваш и не подозревает, что вы его «поддели». Боюсь, что вы и сами этого не подозреваете.

Ведь задача-то решена неверно!

Решение

Обе спички (рис. 45) горизонтальны! Вы удивлены? Но подумайте: спичка, лежащая на горизонтальной поверхности стола, может ли иметь вертикальное направление? Вертикальное направление – это направление сверху вниз, к земле (точнее, к центру земного шара), – а как бы вы ни положили спичку на стол, она не будет направлена к земле.

Рис. 45.

Девяносто девять человек из ста делают эту ошибку, – не исключая даже и иных математиков. Едва ли ваш товарищ будет тот сотый, который не попадет впросак. Два четырехугольника Задача 33-я

На рис. 46 изображен четырехугольник из 6 спичек, площадь которого вдвое больше площади квадрата со стороною, равною одной спичке.

Рис. 46.

Так как длина спички вам известна – 5 см, то вы легко определите площадь вашего четыреугольника в сантиметрах: 5x10=50 кв. см. Задача состоит в следующем: не изменяя длины обвода [25] этого четырехугольника, изменить форму его так, чтобы площадь его уменьшилась вдвое, т. е. равнялась 25 см. Как это сделать?

Пусть читатель обратит внимание на то, что речь идет о составлении четырехугольной фигуры (а не непременно прямоугольной): углы новой фигуры не обязательно должны быть прямые.

Решение

Надо из 6-ти спичек сложить параллелограмм так, чтобы его высота равнялась одной спичке (рис. 47). Такой параллелограмм, имеющий одинаковые основание и высоту с квадратом, должен иметь и одинаковую с ним площадь.

Рис. 47.

Что больше? Задача 34-я

Из 6-ти спичек сложены прямоугольник и равносторонний треугольник. Обводы этих фигур, конечно, одинаковы. А у какой больше площадь? (рис. 48).

Рис. 48.

Решение

Чтобы решить эту задачу, надо знать, как вычисляется площадь треугольника: умножают длину основания на высоту и полученное произведение делят пополам; или – что то же самое – умножают половину основания на высоту. В нашем треугольнике половина основания = одной спичке, т. е. основанию прямоугольника. Если бы высоты этих фигур были одинаковы, то обе фигуры имели бы равные площади. Но легко видеть, что высота треугольника меньше двух спичек, т. е. меньше высоты прямоугольника. Значит, и площадь треугольника меньше площади прямоугольника.

Фигура с наибольшей площадью Задача 35-я

Сейчас мы составили из 6-ти спичек прямоугольник и равносторонний треугольник. Но из того же числа спичек можно составить еще и другие фигуры, имеющие одинаковый обвод. Некоторые из этих фигур изображены на рис. 49.

Рис. 49.

Перейти на страницу:

Похожие книги