Чет или нечет?
Обычная игра в «чет или нечет» общеизвестна. Но вот любопытное видоизменение этой игры. Вы зажимаете в руке некоторое число спичек, а ваш партнер должен отгадать, четное ли это число или нечетное, причем он не произносит ничего вслух, а молча кладет на вашу руку в первом случае – 2 спички, во втором – 1 спичку. Эти спички
При таком способе игры спрашивающий имеет возможность играть без проигрыша. Что он должен для этого делать?
Спрашивающий должен брать всегда
нечетное число +1 = четному числу
нечетное число +2 = нечетному числу,
т. е. в обоих случаях получается противоположное тому, что было указано партнером.
В какой руке?Вы просите товарища взять в одну руку нечетное число спичек, в другую – четное и утверждаете, что сможете безошибочно отгадать, в какой руке у него нечетное число спичек – в правой или в левой.
Для этого вы просите его умножить то число спичек, которое зажато в правой руке, на 10, а то, что в левой, на 5, оба результата сложить и сказать вам сумму.
По этой сумме вы тотчас же говорите ему, в правой или в левой руке находится нечетное число спичек.
Как вы это можете сделать?
Отгадывание основано на том, что когда хотя бы один из двух множителей – число четное, то произведение всегда получается четное, например:
8x6 = 48;
8x7 = 56;
когда же оба множителя нечетных, то произведение – нечетное:
7x7 = 49.
Поэтому, если нечетное число спичек в правой руке (т. е. умножается на 10), а четное в левой (умножается на 5), то в обоих случаях получатся
Итак, когда товарищ ваш назвал вам
В этой игре участвуют двое. На стол кладется кучка из 20 спичек, и играющие, один после другого, берут из этой кучки не более трех спичек каждый. Проигрывает тот, кто берет последнюю взятку, и, значит, выигрывает тот, кто оставляет противнику всего одну спичку.
Как должны вы начать игру и вести ее дальше, чтобы наверняка выиграть?
Желая выиграть, вы должны начать с того, что берете 3 спички. Из оставшихся 17 противник ваш может взять 1, 2 или 3 спички, по своему желанию, оставив в кучке 16, 15 или 14 спичек. Сколько бы он ни взял, вы следующим ходом (беря 3, 2 или 1 спичку) оставляете ему 13 спичек. Дальнейшими ходами вы должны оставить в кучке последовательно 9, 5 и, наконец, 1 спичку, т. е. выигрываете.
Говоря короче: вы берете в начале игры 3 спички, а в дальнейшем каждый раз столько, чтобы ваша взятка вместе с предыдущей взяткой партнера составляла 4 спички.
Этот план игры найден следующим рассуждением. Вы всегда сможете оставить противнику 1 спичку, если предыдущим ходом оставили ему 5 (тогда, сколько бы он ни взял – 3, 2, 1 – останется 2, 3, 4, т. е. благоприятное для вас число спичек). Но, чтобы иметь возможность оставить 5, вы должны предыдущим ходом оставить 9, и т. д. Так, «пятясь назад», легко рассчитать все ходы.
Игра в тридцать дваВот видоизменение предыдущей игры. Берется кучка из 32 спичек. Каждый игрок по очереди извлекает из нее не более 4-х спичек. Кто возьмет последнюю спичку, тот считается выигравшим.
Как следует играть, чтобы непременно выиграть?
Как следует играть в том случае, если взявший последнюю спичку считается
Ведя расчет с конца, вы без труда раскроете секрет беспроигрышной игры. Он состоит в том, чтобы, начиная игру, взять 2 спички; при следующих же ваших ходах вы оставляете в кучке 25, 20, 15, 10, наконец 5 спичек; тогда последняя спичка будет непременно ваша. Другими словами: берите каждый раз столько спичек, чтобы ваша взятка вместе с предыдущей взяткой партнера составляла 5 спичек.
Указанное правило годится и в том случае, если взявший последнюю спичку считается
Игры подобного рода могут быть крайне разнообразны, в зависимости от начального числа спичек в кучке и от предельной величины взятки. Однако знакомые с начатками
Итак, пусть число спичек в куче –
a / (n +1)
Если оно не дает остатка, то надо предоставить начинать игру своему партнеру и брать каждый раз столько, чтобы общее число спичек, взятых обоими от начала игры, последовательно равнялось
n+1 2(n+1) 3(n+1) 4(n+1) и т. д.
Если же при делении a / (n +1) получается остаток, который обозначим через
r+(n+1) r+2(n+1) r+3(n+1) и т. д.
Ради упражнения попробуйте применить указанные правила к следующим частным случаям (выигравшим считается взявший последнюю спичку):
1) число спичек в кучке 15; взятка не свыше 3;
2) число спичек 25; взятка не свыше 4;
3) число спичек 30; взятка не свыше 6;
4) то же, но взятка – не свыше 7.
Разумеется, когда секрет беспроигрышной игры известен обоим партнерам, то выигрыш предрешен, и игра утрачивает смысл.
Игра в двадцать семьВ этой игре также начинают с составления кучки (из 27 спичек) и назначают наибольший размер взятки 4 спички. Но конец игры не похож на конец предыдущих игр: здесь считается выигравшим тот, у кого по окончании игры окажется четное число спичек.
И в этом случае существует секрет беспроигрышной игры. Какой?
Начав рассчитывать с конца, вы найдете следующий способ беспроигрышной игры: если у вас уже имеется нечетное число спичек, то при дальнейших взятках вы должны оставлять противнику всякий раз такое число спичек, которое на 1
Владея этим секретом, вы можете выиграть, даже если и не вы начали игру. Когда же начинать приходится вам, то считайте, что у вас взято 0 спичек: нуль принимайте за число четное (ведь за ним следует нечетное число – один) и поступайте согласно указанным правилам.
Интересно еще рассмотреть вопрос о беспроигрышной игре, если условие конца игры было другое: выигрывает тот, у кого
Эта старинная игра представляет собою усложненное видоизменение предыдущих. На стол кладут три кучки спичек; в каждой кучке может быть любое число спичек, но не больше 7-ми (одна спичка тоже называется в этой игре «кучкой»). Игра состоит в том, что играющие берут по очереди из
Рассмотрим пример. Первоначальное распределение спичек по кучкам, предположим, таково:
Затем, по мере того, как играющие поочередно берут то из одной, то из другой кучки несколько спичек, последовательные изменения в числе спичек будут такие:
Кто возьмет эту последнюю спичку, тот выигрывает.
Здесь также существует секрет беспроигрышной игры. Доискаться его самому вам едва ли удастся (теория «нима» очень сложна); поэтому мы сообщим его, хотя и без обоснования. Надо играть так, чтобы после вашего хода на столе оставалась одна из следующих семи комбинаций спичек:
Числа подобраны так, что, каково бы ни было первоначальное расположение, всегда возможно привести его к одному из сейчас указанных отнятием спичек из одной кучки. Необходимо только указать еще, что делать, если число спичек в одной из кучек сделалось равным нулю, т. е. если кучка исчезла. Тогда надо взять столько спичек, чтобы обе оставшиеся кучки