Читаем Давайте создадим компилятор! полностью

Вспомните, что когда мы начинали с наших односимвольных синтаксических анализаторов, мы приняли соглашение, по которому предсказывающий символ должен быть всегда предварительно считан. То есть, мы имели бы символ, соответствующий нашей текущей позиции во входном потоке, помещенный в глобальной символьной переменной Look, так что мы могли проверять его столько раз, сколько необходимо. По правилу, которое мы приняли, каждый распознаватель, если он находил предназначенный ему символ, перемещал бы Look на следующий символ во входном потоке.

Это простое и фиксированное соглашение служило нам очень хорошо когда мы имели односимвольные токены, и все еще служит. Был бы большой смысл применить то же самое правило и к многосимвольным токенам.

Но когда мы залезли в лексический анализ, я начал нарушать это простое правило. Сканер из Главы 10 действительно продвигался к следующему токену если он находил идентификатор или ключевое слово, но он не делал этого если находил возврат каретки, символ пробела или оператор.

Теперь, такой смешанный режим работы ввергает нас в глубокую проблему в процедуре Block, потому что был или нет входной поток продвинут зависит от вида встреченного нами токена. Если это ключевое слово или левая часть операции присваивания, «курсор», как определено содержимым Look, был продвинут к следующему символу или к началу незаполненного пространства. Если, с другой стороны, токен является точкой с запятой, или если мы нажали возврат каретки курсор не был продвинут.

Само собой разумеется, мы можем добавить достаточно логики чтобы удержаться на правильном пути. Но это сложно и делает весь анализатор очень ненадежным.

Существует гораздо лучший способ – просто принять то же самое правило, которое так хорошо работало раньше, и относиться к токенам так же как одиночным сиволам. Другими словами, мы будем заранее считывать токен подобно тому, как мы всегда считывали символ. Это кажется таким очевидным как только вы подумаете об этом способе.

Достаточно интересно, что если мы поступим таким образом, существующая проблема с символами перевода строки исчезнет. Мы можем просто рассмативать их как символы пробела, таким образом обработка переносов становится тривиальной и значительно менее склонной к ошибкам чем раньше.

<p>Решение</p>

Давайте начнем решение проблемы с пересмотра двух процедуры:

{–}

{ Get an Identifier }

procedure GetName;

begin

SkipWhite;

if Not IsAlpha(Look) then Expected('Identifier');

Token := 'x';

Value := '';

repeat

Value := Value + UpCase(Look);

GetChar;

until not IsAlNum(Look);

end;

{–}

{ Get a Number }

procedure GetNum;

begin

SkipWhite;

if not IsDigit(Look) then Expected('Number');

Token := '#';

Value := '';

repeat

Value := Value + Look;

GetChar;

until not IsDigit(Look);

end;

{–}

Эти две процедуры функционально почти идентичны тем, которые я показал вам в Главе 7. Каждая из них выбирает текущий токен, или идентификатор или число, в глобальную строковую переменную Value. Они также присваивают кодированной версии, Token, соответствующий код. Входной поток останавливается на Look, содержащем первый символ, не являющийся частью токена.

Мы можем сделать то же самое для операторов, даже многосимвольных, с помощью процедуры типа:

{–}

{ Get an Operator }

procedure GetOp;

begin

Token := Look;

Value := '';

repeat

Value := Value + Look;

GetChar;

until IsAlpha(Look) or IsDigit(Look) or IsWhite(Look);

end;

{–}

Обратите внимание, что GetOps возвращает в качестве закодированного токена первый символ оператора. Это важно, потому что это означает, что теперь мы можем использовать этот одиночный символ для управления синтаксическим анализатором вместо предсказывающего символа.

Нам нужно связать эти процедуры вместе в одну процедуру, которая может обрабатывать все три случая. Следующая процедура будет считывать любой из этих типов токенов и всегда оставлять входной поток за ним:

{–}

{ Get the Next Input Token }

procedure Next;

begin

SkipWhite;

if IsAlpha(Look) then GetName

else if IsDigit(Look) then GetNum

else GetOp;

end;

{–}

Обратите внимание, что здесь я поместил SkipWhite перед вызовами а не после. Это означает в основном, что переменная Look не будет содержать значимого значения и, следовательно, мы не должны использовать ее как тестируемое значение при синтаксическом анализе, как мы делали до этого. Это большое отклонение от нашего нормального подхода.

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT