Такой подход позволяет максимально задействовать все процессорные ядра – на каждом выполняется свой процесс или поток. Действия разных процессов в одной программе необходимо согласовать, для этого в средах параллельного программирования предусмотрены разные механизмы: в MPI – передача сообщений, в OpenMP – общие переменные и автоматическое распараллеливание циклов и т. д. Технологии типа MPI – это не только указание особых функций и инструкций в коде, но и среда запуска программы. Особенно это относится к средам, использующим несколько вычислительных узлов, – ведь на каждом узле надо запустить экземпляр (а то и не один) программы и «подружить» его с остальными запущенными экземплярами той же программы (но не соседней). Вот тут и начинаются заботы системного администратора. Все установленные параллельные среды надо оптимально настроить, а при возникновении проблем – уметь расшифровать их диагностику.
Например, в кластере используется скоростная коммуникационная сеть (InfiniBand или другая) и обычный Ethernet для управления. Установленная среда MPI работает, но эффективность работы программ низкая. Нередко причиной является неверная настройка, в результате которой MPI использует медленную управляющую сеть вместо скоростной.
Виды кластеров
Когда говорят «кластер», подразумевают множество компьютеров, объединённых в нечто единое. Но вариантов этого «нечто» может быть несколько. Они отличаются целью и, как следствие, – реализацией.
Первый вид кластеров – High-Availability, или кластеры высокой доступности. Их задача – предоставить доступ к какому-то ресурсу с максимальной скоростью и минимальной задержкой. Ресурсом обычно выступают web-сайт, база данных или другой сервис. В таком кластере при выходе из строя одного узла работоспособность всего ресурса сохраняется – клиенты сбойного узла переподключаются и получают доступ к ресурсу с другого узла кластера. Очень похожий принцип применяется в «облачных» технологиях: вы не знаете, на каком именно узле будет работать ваше приложение или образ операционной системы, облако само подберёт свободные ресурсы.
Другой вид кластеров – High Productivity. Этот тип похож на предыдущий, но в данном случае все узлы кластера уже работают над одним заданием, разбитым на части. Если какой-то узел отказал, его часть задания отправляется другому; если в кластер добавляются новые узлы, им выделяются не посчитанные ещё части, и общий счёт идёт быстрее. В качестве примеров можно назвать GRID, программы типа Seti@home, Folding@Home. Однако с помощью таких кластеров может быть решён только узкий класс задач. Да и сам кластер для таких задач нередко становится не нужен, можно воспользоваться домашними компьютерами или серверами, связав их через локальную сеть или Интернет.
Третий вид – High Performance (HPC – High Performance Computing). Именно он интересен нам. В отличие от остальных, выход из строя одного из узлов кластера, как правило, ведёт к аварийному завершению параллельной программы, только в редких случаях выполнение программы автоматически продолжается с сохранённой ранее контрольной точки. Именно поэтому, в отличие от предыдущих видов, HPC-кластеры менее устойчивы в работе, и без должного контроля и мониторинга использовать их просто не получится.
Важное отличие этого вида кластеров от остальных – тесная связность всех узлов. Это и самые быстрые сети, соединяющие узлы, и высокопроизводительные параллельные файловые системы, и средства дополнительной синхронизации узлов, и другие средства, важные для параллельных программ. Приложения, работающие на таких кластерах, как правило, работают в модели передачи сообщений между параллельно запущенными процессами. Если запустить их на множестве компьютеров, соединённых медленной сетью, то они б'oльшую часть времени потратят на ожидание информации друг от друга.
Идеал, к которой стремятся все производители кластеров, – создать виртуальный компьютер с большой памятью и огромным числом вычислительных ядер. К сожалению, реальность ещё очень далека от идеала, и сейчас любой вычислительный кластер – это всё-таки множество отдельных вычислительных узлов, соединённых быстрой сетью. От сети в таком кластере требуется не только скорость (пропускная способность), но и низкая величина задержек или накладных расходов (латентность). Большинство параллельных программ обмениваются сообщениями часто, а значит, время на инициализацию отправки и приёма сообщения начинает играть большую роль. На сети с большой латентностью некоторые программы могут работать в разы медленнее, чем на сети, где латентность низкая.
Кластеры и суперкомпьютеры – общее и разное
Мы только что поговорили о кластерах. Но всегда ли слово «суперкомпьютер» означает кластер? Нет, не всегда. Важная черта кластера – возможность сборки из серийных общедоступных компонентов. Т. е. можно купить все компоненты кластера в магазине и, обладая достаточным опытом, собрать его самостоятельно.