Профессор Мэтью Бин, изучающий робототехнику в Калифорнийском университете в Санта-Барбаре, показал, что это уже происходит среди хирургов. Медицинские роботы находятся в больницах уже более десяти лет, помогая проводить операции, в то время как врачи рядом управляют ими с помощью контроллеров, напоминающих видеоигры. Хотя данные о хирургических роботах неоднозначны, во многих случаях они оказываются полезными. Но они также создают огромную проблему в обучении.
При обычном обучении хирургии опытные врачи и стажеры могут работать рядом друг с другом, при этом врач аккуратно помогает стажеру, наблюдая и пробуя техники. При роботизированной хирургии робот управляется только одним врачом, обычно старшим хирургом, а стажеры вынуждены наблюдать за работой робота, недолго поработать с ним или просто на тренажерах. В условиях огромной нехватки времени ординаторам приходилось выбирать между обучением традиционным хирургическим навыкам и освоением новых роботов в свободное время. В итоге многие врачи оказались недостаточно подготовленными, а те, кто хотел научиться пользоваться роботизированным хирургическим оборудованием, ушли от официальных каналов. Они занимались собственным "теневым обучением", просматривая каналы на YouTube или тренируясь на живых пациентах больше, чем, возможно, следовало.
Подобный кризис обучения будет распространяться по мере того, как ИИ будет автоматизировать все больше и больше базовых задач. Даже если эксперты станут единственными людьми, которые смогут эффективно проверять работу все более способных ИИ, мы рискуем остановить конвейер, создающий экспертов. Чтобы быть полезным в мире ИИ, необходимо обладать высоким уровнем человеческой компетентности. Хорошо, что педагоги кое-что знают о том, как создавать экспертов. По иронии судьбы, это означает возвращение к основам, но адаптированным для среды обучения, которая уже была революционизирована ИИ.
Создание экспертных знаний в эпоху искусственного интеллекта
ИИ хорошо справляется с поиском фактов, обобщением статей, написанием текстов и задачами кодирования. А обученные на огромных массивах данных и имеющие доступ к интернету, большие языковые модели, похоже, накопили и освоили множество коллективных человеческих знаний . Это огромное и доступное для использования хранилище знаний теперь у каждого под рукой. Поэтому может показаться логичным, что обучение основным фактам устарело. Однако оказалось, что все совсем наоборот.
В этом заключается парадокс приобретения знаний в эпоху ИИ: нам может казаться, что нам не нужно работать над запоминанием и накоплением базовых навыков или созданием хранилища фундаментальных знаний - в конце концов, это то, что хорошо умеет делать ИИ. Фундаментальные навыки, которые всегда утомительно изучать, кажутся устаревшими. И они могли бы быть таковыми, если бы существовал короткий путь к экспертности. Но путь к экспертности требует опоры на факты.
Изучение любого навыка и овладение любой областью требует заучивания, тщательного формирования навыков и целенаправленной практики, и ИИ (и будущие поколения ИИ), несомненно, будет лучше новичка во многих ранних навыках. Например, исследователи из Стэнфорда обнаружили, что ИИ GPT-4 набрал больше баллов, чем студенты-медики первого и второго курсов на выпускных экзаменах по клинической логике. Соблазн может заключаться в том, чтобы передать эти базовые навыки ИИ. В конце концов, врачи с удовольствием используют медицинские приложения и интернет для диагностики пациентов, а не просто заучивают медицинскую информацию. Разве это не то же самое?
Проблема в том, что для того, чтобы научиться критически мыслить, решать проблемы, понимать абстрактные концепции, решать новые задачи и оценивать результаты работы ИИ, нам нужен опыт в данной области. Педагог-эксперт, знающий своих учеников и класс, а также обладающий педагогическими знаниями, может оценить написанный ИИ учебный план или сгенерированный ИИ тест; опытный архитектор, хорошо знающий принципы проектирования и строительные нормы, может оценить осуществимость предложенного ИИ плана здания; опытный врач, обладающий обширными знаниями анатомии и болезней человека, может тщательно проанализировать сгенерированный ИИ диагноз или план лечения. Чем ближе мы подходим к миру киборгов и кентавров, в котором ИИ дополняет нашу работу, тем больше нам нужно поддерживать и развивать человеческий опыт. Нам нужны эксперты-люди.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии