Учитывая историю автоматизации, многие могли бы предсказать, что первыми задачами, с которыми хорошо справится ИИ, будут скучные, повторяющиеся и аналитические. Именно такие задачи обычно первыми автоматизируются в любой волне новых технологий - от паровой машины до роботов. Однако, как мы видим, это не так. Большие языковые модели отлично справляются с написанием текстов, но лежащая в их основе технология Transformer также служит ключом к целому ряду новых приложений, включая ИИ, создающий произведения искусства, музыку и видео. В результате исследователи утверждают, что новая волна ИИ в наибольшей степени затронет именно те рабочие места, которые связаны с наиболее творческими, а не повторяющимися задачами.
Это, как правило, заставляет нас чувствовать себя неловко: В конце концов, как может ИИ, машина, создать что-то новое и творческое? Дело в том, что мы часто путаем новизну с оригинальностью. Новые идеи не приходят из эфира; они основаны на существующих концепциях. Специалисты по инновациям давно указывают на важность рекомбинации в генерировании идей. Прорывы часто случаются, когда люди соединяют далекие, казалось бы, несвязанные идеи. Канонический пример: братья Райт объединили свой опыт механика велосипеда и наблюдения за полетом птиц, чтобы разработать концепцию управляемого самолета, который можно было бы сбалансировать и направить, искривив крылья. Они не были изобретателями велосипеда, первыми, кто наблюдал за крыльями птиц, или даже первыми, кто попытался построить самолет. Вместо этого они первыми увидели связь между этими понятиями. Если вы сможете соединить разрозненные идеи из разных областей и добавить немного случайного творчества, то, возможно, вам удастся создать что-то новое.
LLM - это машины связей. Они обучаются, генерируя связи между лексемами, которые могут казаться человеку несвязанными, но отражают некий глубокий смысл. Добавьте к этому случайность, которая присуща ИИ, и вы получите мощный инструмент для инноваций. ИИ стремится сгенерировать следующее слово в последовательности, находя следующую вероятную лексему, независимо от того, насколько странными были предыдущие слова. Поэтому неудивительно, что ИИ с легкостью придумывает новые концепции. Я попросил ИИ: Найти мне бизнес-идеи, которые включали бы в себя фастфуд, патент 6 604 835 B2 [который оказался на лавовую лампу, включающую кусочки хрусталя] и Англию XIV века.
Она предложила:
Вы можете ненавидеть эту идею (или любить ее, в зависимости от вашей терпимости к ресторанам, ориентированным на лавовые лампы), но она каким-то образом имеет смысл из трех несвязанных идей, которые я ему предложил, и если мне не понравится эта, он будет рад сгенерировать множество других. И хотя я не уверен, что хочу бросить работу, чтобы открыть "Лава Лампшир", как ИИ предложил мне назвать свой ресторан, подобный ответ демонстрирует определенный уровень креативности. На самом деле, по многим общепринятым психологическим тестам креативности, ИИ уже более креативен, чем человек.
Один из таких тестов известен как тест альтернативных применений (AUT). Он измеряет способность человека придумывать самые разные варианты использования обычного предмета. В этом тесте участнику предлагают повседневный предмет, например скрепку, и просят придумать как можно больше вариантов его использования. Например, скрепкой можно скреплять бумаги, взламывать замки или вылавливать мелкие предметы из узких мест. Тест AUT часто используется для оценки способности человека мыслить разнообразно и выдвигать нестандартные идеи.
Вы можете попробовать AUT прямо сейчас: Придумайте креативные идеи использования зубной щетки, не связанные с чисткой зубов. Пусть они будут как можно более непохожими друг на друга. У вас есть две минуты. Я буду ждать.
Время вышло.
Сколько их у вас получилось? Типичное число - от 5 до 10. Я попросил искусственный интеллект выполнить точно такое же задание, и он придумал 122 идеи за две минуты (причем версия искусственного интеллекта, которую я использовал, скорее всего, намного медленнее, чем та, что доступна вам, когда вы читаете эту книгу). И хотя у некоторых идей есть общие черты ("использовать как щетку, чтобы убрать грязь с грибов" и "использовать как инструмент, чтобы убрать грязь с фруктов"), есть и множество интересных идей, от создания тонких текстур в глазури до применения в качестве миниатюрных барабанных палочек ("идеально подходит для барабанной установки в кукольном домике").
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии