Проблема состоит в том, что, когда дело касается морального выбора, люди последовательно непоследовательны. То, что они называют правильным, и то, что делают в действительности, часто не совпадает (вспомним дело Китти Дженовиз[110]). Моральная арифметика изменяется со временем и имеет отличия в разных культурах. Детали каждого из сценариев влияют на решение: пешеход — ребенок или взрослый? Пешеход выглядит пьяным? Он похож на преступника, пытающегося скрыться? Идущий сзади автомобиль плотно прижался к нашему?
Как поступить машине?
Как поступить человеку?
Наука в вопросах морального выбора помогает плохо. Но кому-то придется на них отвечать, раз мы перекладываем на машины столько решений. И у нас все меньше возможностей сделать так, чтобы это был человек.
Когда мы выдернем вилку из розетки
Что такого особенного в мыслящих машинах? Для небольшого числа философов и теологов — еще понятно, а для остальных из нас искусственный интеллект будет просто очередным шагом на долгом пути технологического развития, которое уже изменило мир практически до неузнаваемости.
Почти несомненно, что с крайне важной мыслительной работой, направленной на решение проблем, адаптивное машинное обучение будет справляться успешнее, чем любой человеческий мозг (или даже целая конференция специалистов). Машины уже лучше вас самих понимают ваши потребительские предпочтения благодаря хитроумным финансово-мотивированным адаптивным алгоритмам, которые отслеживают ваше поведение в сети. Но идет работа и над другими задачами, такими как «умная» охрана правопорядка и обнаружение потенциально возможных ситуаций жестокого обращения с детьми, причем и то и другое реализуется посредством сопоставления не связанных между собой на первый взгляд данных.
С тех пор как мы покинули саванну, этот процесс был отличительным признаком человеческого мышления; поскольку мировые проблемы становятся все острее и сложнее, нам следует принять любой эффективный инструмент, способный с ними справиться. Я согласился бы на партнерство с обучающейся машиной, чтобы сделать современную жизнь более эффективной с точки зрения ресурсов — в такой мере, которой не может обеспечить человеческий мозг. Мир, где бесперебойно выращивается пища, где в достатке чистой воды для людей и экосистем, комфортного и энергоэффективного жилья, вполне возможен, и его отчасти помогли бы нам приблизить мыслящие машины.
История говорит нам о том, что такое партнерство будет развиваться постепенно, оставаясь относительно незаметным для большинства занятых людей, живущих своей занятой жизнью. Но чисто теоретически давайте предположим, что сбылись наши худшие опасения, все вышло из-под контроля, и в какой-то момент мыслящие машины сбросили с престола Homo sapiens. Что тогда? Я не сомневаюсь, что мы так или иначе сумеем выдернуть вилку из розетки. Произойдет великий передел, и мы опять будем владеть землями, океанами и небесами. В зависимости от того, насколько велика окажется интеграция и высота падения, человечество может откатиться на тысячелетия назад, поскольку нам придется с нуля учиться тому, как самим добывать пищу и воду, строить жилища и транспорт без помощи мыслящих машин.
Мониторинг и управление планетой
В 1922 году математик Льюис Фрай Ричардсон описал большой зал, заполненный «вычислителями» — людьми, которые, поочередно выполняя по одному ручному вычислению, значительно усовершенствовали бы численное прогнозирование погоды. Меньше чем через 100 лет машины улучшили продуктивность в решении этой задачи на пятнадцать порядков и способны теперь производить почти миллион миллиардов схожих вычислений в секунду.
Рассмотрим для сравнения рост производительности в тяжелой промышленности. В 2014 году во всем мире было использовано около 500 эксаджоулей первичных энергоресурсов для производства электричества и топлива для транспорта и тепла. Даже если считать, что вся эта энергия пошла на выполнение физических задач примерно 3 миллиардов работающих людей во всем мире (а это не так), и предположить, что рацион среднестатистического взрослого человека содержит 2000 калорий в день, то мы получим около 50 «энергетических работников» на каждого человека. Более строгие допущения все равно ведут самое большее к повышению эффективности ручного труда на несколько порядков.
Мы чрезвычайно успешно ускоряем наши процессы мышления и обработки информации, значительно успешнее, чем любые другие. Есть надежда, что ИИ позволит нам резко повысить эффективность определенных когнитивных функций и начать справляться с задачами, сложность которых также на несколько порядков выше, чем ранее доступная для нас.