Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Очень многие авторы утверждали, что золотой прямоугольник – самый эстетически приятный прямоугольник на свете. В новое время интерес к этому вопросу был во многом вызван чередой несколько странноватых публикаций немецкого исследователя Адольфа Цайзинга, которая началась с выпущенной в 1854 году книги «Новейшая теория пропорций человеческого тела» (Adolph Zeising. Neue Lehre von den Proportionen des menschlichen K"orpers), а ее кульминацией стало посмертное издание труда Цайзинга «Золотое сечение» («Der Goldener Schnitt», 1884). В этих работах Цайзинг сочетал идеи Пифагора и Витрувия в собственной вольной трактовке и на их основании отстаивал ту точку зрения, что «деление на части человеческого тела, структура тела многих животных, для которых характерно хорошее сложение, фундаментальные типы различных видов растений… гармонии самых приятных музыкальных аккордов и пропорциональность самых прекрасных произведений архитектуры и скульптуры» – все это основано на злотом сечении. Поэтому для Цайзинга золотое сечение становилось ключом к пониманию всех пропорций «самых утонченных форм в природе и искусстве». Задачу проверить излюбленную теорию Цайзинга взял на себя Густав Теодор Фехнер (1801–1887), один из основателей современной психологии.

Фехнера считают основоположником экспериментальной эстетики. В одном из своих первых экспериментов он провел опрос общественного мнения: просил посетителей Дрезденской галереи сравнить красоту двух почти одинаковых изображений Мадонны («Дрезденской Мадонны» и «Дармштадтской Мадонны»), выставленных рядом. Обе картины приписывают немецкому художнику Гансу Гольбейну Младшему (1497–1543), хотя было подозрение, что «Дрезденская Мадонна» – всего лишь позднейшая копия. Эксперимент потерпел полный провал: из 11 842 посетителей ответить на вопросы анкеты согласились лишь 113 – и это были в основном художественные критики или люди так или иначе предвзятые.

Первые эксперименты с прямоугольниками Фехнер проводил в 1860 годы, а их итоги подвел в книге «Введение в эстетику» («Vorschule der Aesthetik», 1876). Фехнер горячо протестовал против «нисходящего» подхода к эстетике, который начинается с формулировки абстрактных принципов красоты, а отстаивал развитие экспериментальной эстетики – снизу вверх. Эксперимент Фехнера был достаточно прост: перед испытуемым помещали десять прямоугольников, а затем просили отобрать самый приятный и самый неприятный. По отношению длины и ширины прямоугольники варьировались от квадрата (соотношение 1,0) до продолговатого прямоугольника (соотношение 2,5). Три прямоугольника были более вытянутые, чем золотой прямоугольник, шесть – ближе к квадрату. Согласно тому, как описывал ход эксперимента сам Фехнер, испытуемые часто медлили и колебались, отвергая то один, то другой прямоугольник. Между тем экспериментатор объяснял, что они должны выбрать самый приятный, гармоничный, изящный прямоугольник. В ходе эксперимента Фехнера 76 % испытуемых выбирали три прямоугольника с соотношением сторон 1,75, 1,62 и 1,50, а большинство – именно золотой прямоугольник (1,62). Все остальные прямоугольники получали менее 10 % «голосов» каждый.

Задумывая этот эксперимент, Фехнер был небеспристрастен. Он сам признавал, что на опыт его вдохновило «видение мира, где мысль, дух и материя едины и связаны тайной чисел». Обвинять Фехнера в подтасовке результатов никто не станет, однако некоторые отмечают, что он, вероятно, бессознательно создавал обстановку, способствовавшую желаемому результату. И в самом деле, неопубликованные работы Фехнера показывают, что он проводил подобные эксперименты и с эллипсами, однако в итоге не обнаружил никакого предпочтения золотому сечению и публиковать результаты не стал.

Впоследствии Фехнер измерил параметры тысяч печатных изданий, картинных рам в галереях, оконных рам и других предметов прямоугольной формы. Результаты у него были довольно интересны и зачастую даже забавны. Например, он обнаружил, что игральные карты в Германии печатались несколько более продолговатыми, чем золотой прямоугольник, а во Франции были ближе к нему. С другой стороны, Фехнер обнаружил, что отношение длины и ширины обложек сорока романов из публичной библиотеки близко к . Картины (исследовалась область внутри рамы), по данным измерений Фехнера, были «существенно короче» золотого прямоугольника. Что же касается оконных рам, Фехнер сделал по их поводу следующее наблюдение, которое в наши дни сочли бы политически некорректным: «Лишь в крестьянских домах окна часто бывают квадратными, что согласуется с тем фактом, что люди с низким уровнем образования предпочитают эту форму чаще, чем люди образованные». Далее Фехнер утверждает, что на могильных крестах перекладина в среднем пересекает вертикальный шест в золотом сечении.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное