Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Предполагалось, что Модулер станет «гармонической мерой человеческого масштаба, применимой универсально в архитектуре и в механике». В сущности, такое определение – не более чем перефразированное знаменитое изречение Протагора, высказанное в V веке до н. э.: «Человек есть мера всех вещей». Естественно, Модулер был основан на пропорциях человеческого тела (рис. 79) – в духе «Витрувианского человека» (рис. 53) и общей философской задачи создать систему пропорций, эквивалентной той, что создала природа. Человек ростом шесть футов (около 183 см), несколько напоминающий знакомого «мишленовского человечка» с рекламы шин, с поднятой рукой (общая высота составляет 226 см, или 7 футов 5 дюймов), вписан в квадрат (рис. 80). Отношение его роста (183 см, 6 футов) к расстоянию от подошв до пупка (на середине общей высоты – 113 см, 3 фута 8,5 дюймов) – это в точности золотое сечение. Общая высота – от подошв до кончиков пальцев поднятой руки – также делится в золотом сечении (на 140 см и 86 см) на уровне запястья опущенной руки. Два отношения – 113/70 и 140/86 – подразделялись далее на более мелкие величины в соответствии с последовательностью Фибоначчи – каждое число есть сумма двух предыдущих (рис. 81). Окончательная версия Модулера (рис. 79 и 81), таким образом, опиралась на две взаимопроникающие шкалы чисел Фибоначчи («красная и голубая серии»). По предложению Ле Корбюзье Модулер должен был обеспечить гармонические пропорции всему – от размеров дверных ручек и шкафов до зданий и городов. В мире, где постоянно росла потребность в массовом производстве, Модулер должен был предоставить модель для стандартизации. Ле Корбюзье выпустил две книги – «Модулер» (1948) и «Модулер II» (1955) (Le Corbusier. Le Modulor; Le Corbusier. Modulor II), которые вызвали пристальное внимание в кругах специалистов по архитектуре и до сих пор служат аргументом в любом споре о пропорциях. Ле Корбюзье очень гордился тем, что ему представился случай показать «Модулер» самому Альберту Эйнштейну – они встречались в Принстоне в 1946 году. Вот как архитектор вспоминал этот момент: «Я плохо говорил, плохо рассказал о Модулере, завяз в трясине причинно-следственных связей». Тем не менее, Эйнштейн написал ему письмо, где сказал о Модулере так: «Это шкала пропорций, благодаря которой сделать плохо станет трудно, а сделать хорошо – легко».

Рис. 79

Рис. 80

Рис. 81

Свою теорию Модулера Ле Корбюзье воплощал на практике во многих своих проектах. Скажем, в предварительных заметках к проекту целого индийского города Чандигарх, где стоят четыре крупных правительственных здания – парламент, дворец правосудия и два музея – мы читаем: «Однако, разумеется, при разработке ритма окон учитывается Модулер… в общей части здания, где, в частности, многочисленные кабинеты и залы суда должны укрываться от солнца, Модулер обеспечивает единство текстуры. В дизайне фасадов Модулер (с точки зрения текстуры) задействует красную и голубую серию в пределах пространств, уже ограниченных оконными рамами».

Разумеется, художники интересовались золотым сечением и после Ле Корбюзье, однако большинство его последователей увлекались скорее математико-философски-историческими качествами этого соотношения, нежели его предполагаемыми эстетическими свойствами. Скажем, английский абстракционист Энтони Хилл в 1960 году применил последовательность Фибоначчи в параметрах своей работы «Конструктивный рельеф» (рис. 82). Подобным же образом современный израильский художник и скульптор Игаль Тумаркин сознательно включил формулу ( = (1+5)/2) в одну из своих картин.

Рис. 82

Итальянец Марио Мерц превратил последовательность Фибоначчи в важную составляющую своих работ. Мерц родился в Милане в 1925 году, а в 1967 году примкнул к художественному течению «Арте повера» (итал. «Arte Povera» – «бедное искусство»), куда также входили художники Микеланджело Пистолетто, Лучано Фабро и Яннис Кунеллис. Название движения (его придумал критик Джермано Челант) объясняется стремлением участников применять в своем творчестве простые повседневные материалы в знак протеста против негуманного общества потребления, каким они его видели. Применять последовательность Фибоначчи Мерц начал в 1970 году в серии «концептуальных» работ, куда входили последовательности чисел и разнообразные спирали.

Мерц так стремился применять числа Фибоначчи, поскольку эта последовательность лежит в основе многих закономерностей роста и развития в природе. В своей работе 1987 года под названием «Ударная волна» («Onda durto») художник разместил длинный ряд стопок газет, над каждой из которых сияют неоновые числа Фибоначчи. Работа «Неаполь Фибоначчи» (1970) состоит из 10 фотографий фабричных рабочих, где количество изображенных возрастает в соответствии с последовательностью Фибоначчи от одиночных портретов до группы из 55 человек (десятое число Фибоначчи).

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное