Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Художник Эдвард Б. Эдвардс, живший в ХХ веке, разработал на основе логарифмической спирали сотни декоративных мотивов – многие из них приведены в его книге «Дизайн и орнаменты с динамической симметрией» (Edward B. Edwards. Pattern and Design with Dynamic Symmetry), например, узоры, показанные на рис. 39.

Рис. 38

Рис. 39

Логарифмическая спираль и золотое сечение неотделимы друг от друга. Рассмотрим серию сложенных воедино золотых прямоугольников, которые получились у нас, когда мы отрезали квадраты от золотых прямоугольников побольше (рис. 40; об этом мы уже немного говорили в главе 4). Если последовательно соединить точки, в которых эти «вертящиеся квадраты» делят стороны в золотом сечении, у нас получится логарифмическая спираль, сворачивающаяся внутрь, к полюсу (то есть в точку на пересечении диагоналей на рис. 25, которой дали пышное название «Око Господне».

Логарифмическую спираль можно получить и из золотого треугольника. В главе 4 мы видели, что если начать с золотого треугольника (напомню, что это равнобедренный треугольник, в котором сторона относится к основанию в золотом сечении) и разделим биссектрисой угол при основании, у нас получится золотой треугольник поменьше. Если и дальше делить биссектрисами углы при основании треугольника – до бесконечности – получится водоворот из треугольников. Если соединить их вершины, получится логарифмическая спираль (рис. 41).

Рис. 40

Рис. 41

Еще логарифмическую спираль называют равноугольной спиралью. Этот термин ввел в 1638 году французский математик и философ Рене Декарт (1596–1650), по имени которого названы числа, определяющие положение точки на плоскости относительно двух осей – декартова система координат.

Слово «равноугольная» отражает другое уникальное качество логарифмической спирали. Если прочертить прямую линию из полюса к любой точке спирали, она пересечет кривую под одним и тем же углом (рис. 42). Этим качеством пользуются соколы, когда бросаются на добычу. Соколы-сапсаны – одни из самых быстрых птиц на земле, когда они пикируют к цели, то разгоняются до двухсот километров в час. Однако они могли бы летать даже быстрее, если бы приближались к добыче по прямой, а не по спиральной траектории. Биолог Ванс Э. Такер из Университета Дюка в Северной Каролине многие годы интересовался, почему же сапсаны не выбирают кратчайший путь к добыче. Затем он понял, что поскольку глаза у соколов расположены по сторонам головы, то чтобы воспользоваться преимуществом, которое дает этим птицам острейшее зрение, им приходится поворачивать голову на 40 градусов в ту или иную сторону. В ходе экспериментов в аэродинамической трубе Такер выяснил, что такой поворот головы заметно тормозит движение сокола. Результаты этих исследований были опубликованы в ноябрьском выпуске «Journal of Experimental Biology» за 2000 год и показывают, что соколы держат голову прямо и летят по логарифмической спирали. А поскольку спираль обладает свойством равноугольности, такая траектория позволяет птице, разгоняясь до предельных скоростей, не упускать добычу из виду.

Рис. 42

Как ни удивительно, та же самая спиральная кривая, какую мы наблюдаем у ракушек одноклеточных фораминифер и в сердцевине подсолнуха, та же, которая направляет полет сокола, обнаруживается и в «звездных системах, группирующихся в одной плоскости, наподобие Млечного пути», о которых философ Иммануил Кант (1724–1804) размышлял задолго до того, как их удалось пронаблюдать (рис. 43). Эти системы было принято называть «островные Вселенные» – гигантские галактики, в которых таких звезд, как наше Солнце, сотни миллиардов. Наблюдения на орбитальном телескопе им. Э. Хаббла показали, что в наблюдаемой Вселенной примерно сто миллиардов галактик, многие из них спиральные. Трудно придумать более удачную иллюстрацию к величественному видению английского поэта, художника и мистика Уильяма Блейка (1757–1827), писавшего:

В одном мгновенье видеть вечность,Огромный мир – в зерне песка,В единой горсти – бесконечностьИ небо – в чашечке цветка.(Пер. С. Маршака)
Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное