Читаем – Число Бога. Золотое сечение – формула мироздания полностью

В статье, опубликованной в «Journal de Physique» в 1984 году, группа ученых во главе с Н. Ривье из Университета Прованса в Марселе придумала простой математический алгоритм, который показывает, что если строить определенную геометрическую фигуру на основе угла, равный золотому углу, получатся структуры, очень похожие на сердцевину подсолнуха (рис. 36). Ривье с сотрудниками предположили, что здесь таится ответ на вопрос, заданный в классическом труде биолога сэра Д’Арси Уэнтворта Томпсона. В своем фундаментальном труде «О росте и форме» (первое издание – 1917, второе, пересмотренное, – 1942) Томсон восклицает: «…и не самая очевидная черта этого явления [филлотаксиса] – то, насколько ограниченно и даже мало число возможных комбинаций, которые мы наблюдаем и распознаем!» Группа Ривье обнаружила, что необходимые условия однородности (то есть структура должна быть везде одинакова) и самоподобия (если изучить структуру на разных масштабах, от мелкого до крупного, она будет выглядеть везде совершенно одинаково) очень сильно ограничивают количество возможных структур. Вероятно, этих двух свойств достаточно, чтобы понять, почему числа Фибоначчи и золотое сечение столь вездесущи в филлотаксисе, однако почему так получается физически, они не объясняют.

Возможно, подлинные движущие силы, стоящие за филлотаксисом, следует искать не в ботанике, а в физике – в экспериментах Л. С. Левитова (1991) и Стефана Дюади и Ива Куде (1992 и 1996). Эксперимент Дюади и Куде особенно интересен. Исследователи поместили плоскую чашку, наполненную силиконовым маслом, в магнитное поле так, чтобы поле у краев чашки было сильнее, чем в середине. Периодически в центр чашки капали магнитной жидкостью, капли которой вели себя как крошечные магнитиные палочки. Магнитики отталкивались друг от друга, а градиент магнитного поля толкал их к краям. Дюади и Куде обнаружили осциллирующие узоры, которые в целом сходились к спирали, на которой следующие друг за другом капли разделялись золотым углом. Физические системы обычно стремятся к состоянию, в котором энергия минимальна. По предположению ученых, филлотаксис просто отражает состояние минимальной энергии системы взаимно отталкивающихся почек. Другие модели, в которых листья появлялись в местах наибольшей концентрации какого-то питательного вещества, также обычно показывают разделение под золотыми углами.

Надеюсь, когда вам в следующий раз придется лакомиться ананасом, посылать любимой алую розу или любоваться на «Подсолнухи» Ван Гога, вы вспомните, что закон роста этих растений опирается на чудесное число, которое мы называем золотым сечением. Однако не забывайте, что рост растений зависит и от других факторов, а не только от оптимального расстояния между листьями. Следовательно, законы филлотаксиса, о которых я рассказал, нельзя считать такими же универсальными, как законы физики. Напротив, по словам знаменитого канадского математика Коксетера, это не более чем «на удивление сильная тенденция».

Рис. 36

Однако ботаника – не единственная область в природе, где можно наткнуться на золотое сечение и числа Фибоначчи. Они проявляются в явлениях самого различного масштаба, от микроскопического до галактического. И их появление зачастую принимает обличье величественной спирали.

<p>Измененная, вновь воскресаю прежней</p>

В истории математика не было семейства, породившего столько знаменитых математиков, сколько семья Бернулли: целых тринадцать!

Испугавшись «Испанской ярости» – кровопролитного восстания, поднятого в Нидерландах испанскими солдатами, – семейство бежало из Нидерландов, находившихся под властью испанских католиков, в Швейцарию, в город Базель. Три члена семьи, братья Якоб (1654–1705) и Иоганн (1667–1748) и второй сын Иоганна Даниил (1700–1782), были в интеллектуальном отношении на голову выше остальных родственников. Как ни странно, ожесточенные семейные распри прославили Бернулли чуть ли не в той же степени, что и многочисленные достижения в математике. Однажды Якоб с Иоганном повздорили особенно сильно. Началась ссора из-за разногласий по поводу решения знаменитой задачи по механике. Эта задача известна под названием «брахистохрона» (от греческих слов «брахистос», «кратчайший», и «хронос», «время») и состоит в том, чтобы найти кривую, по которой частица попадет из точки А в точку В под воздействием одной лишь силы гравитации за кратчайшее время. Братья независимо пришли к одному и тому же решению, однако в выкладках Якоба была ошибка, и он впоследствии пытался выдать выкладки Иоганна за свои. Печальным последствием этих событий стало то, что Иоганн стал профессором в Гронингене и до самой смерти брата ни разу не наведывался в Базель.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное