Смысл этого предварительного коэффициента с'(а, b) ясен. Династии, то есть векторы из vir(D), попавшие в параллелепипед P'(а, b), естественно назвать «похожими» на династию а не менее чем b. В самом деле, каждая из таких династий удалена от династии а не более, чем от династии а удалена династия b. Следовательно, в качестве меры близости двух династий а и b, мы берем долю династий, «похожих» на а не менее чем b, в множестве всех династий vir(D).
Однако такой коэффициент с'(а, b) пока недостаточно хорош, поскольку он никак не учитывает то обстоятельство, что летописцы определяли длительность правлений царей с какой-то ошибкой, причем обычно тем большей, чем дольше длительность правления. Другими словами, нам нужно учесть ошибку летописцев (3), обсужденную выше.
Перейдем к моделированию ошибки (3). Пусть T — это длительность правления. Ясно, что длительность правления можно рассматривать как случайную величину, определенную на «множестве всех царей». Обозначим через g(T) число царей, правивших T лет. В работе [884] автор настоящей книги экспериментально вычислил эту гистограмму частот g(T) (плотность распределения указанной случайной величины) на основе данных, приведенных в «Хронологических Таблицах» Ж. Блера [76]. Положим h(T) = 1/g(T) и назовем h(T) функцией ошибок летописцев. Ошибка h(T) в определении длительности T тем больше, чем с меньшей вероятностью случайная величина, — то есть длительность правления, — принимает значение T. Другими словами, небольшие, «короткие» длительности правлений царей лучше поддаются вычислению летописцев. Здесь хронист ошибается незначительно. Напротив, большие длительности правлений царей, встречающиеся довольно редко, летописец обычно вычисляет с существенной ошибкой. Чем больше длительность правления, тем большую ошибку он может совершить.
Функция ошибок h(T) для указанной плотности вероятностей случайной величины (длительности правления) была определена экспериментально [884], с. 115. Разобьем отрезок [0,100] целочисленной оси T на десять отрезков одинаковой длины, а именно: [0,9], [10,19], [20,29], [30,39],…, [90,99]. Тогда оказывается, что:
h(T) = 2, если T изменяется от 0 до 19,
h(T) = 3, если T изменяется от 20 до 29,
h(T) = 5([T/10] - 1), если T изменяется от 30 до 99.
Здесь через [s] обозначена целая часть числа s, рис. 5.21.
Учтем теперь ошибки летописцев при построении «окрестности» точки а. Для этого расширим параллелепипед P'(а, b) до бóльшего параллелепипеда P(а, b), центром которого по-прежнему является точка а, и ортогональными проекциями на координатные оси являются отрезки с концами
[ai - |ai - bi| - h(ai), ai + |ai - bi| + h(ai)].
Ясно, что параллелепипед Р'(а, b) целиком лежит внутри большого параллелепипеда P(а, b), рис. 5.20. Половиной диагонали этого большого параллелепипеда является вектор a-b + h(a), где вектор h(a) выглядит так:
h(a) = (h(ai),…, h(ak)).
Его можно назвать ВЕКТОРОМ ОШИБОК ЛЕТОПИСЦЕВ.
Итак, мы смоделировали все три основные ошибки, делавшиеся летописцами при подсчете ими длительностей правлений царей. В качестве окончательного коэффициента с(а, b), измеряющего близость или удаленность друг от друга двух династий а и b, мы возьмем следующее число:
Ясно, что число с(а, b) является интегралом функции плотности z(x) по параллелепипеду P(а, b). На рис. 5.22 число с(а, b) условно изображается объемом призмы, имеющей в качестве основания параллелепипед P(а, b), и ограниченной сверху графиком функции z. Число с(а, b) можно, при желании, интерпретировать как вероятность того, что случайный «династический вектор», распределенный в пространстве Rk с функцией плотности z, оказался на «расстоянии» от точки а, не превышающем «расстояния» между точками а и b, с учетом ошибки h(a). Другими словами, случайный «династический» вектор, распределенный с функцией плотности z, попал в окрестность P(а, b) точки а, имеющую «радиус» a - b + h(a).