Читаем Четвертое измерение полностью

Поверхности в пространстве — это геометрические объекты, которые могут быть локально описаны двумя координатами U и V, называемыми локальными координатами. Локальная карта (Т) является телескопом, через который математик наблюдает (получается двумерное изображение) конкретную область изучаемого объекта.

В упомянутой работе Гаусс ввел понятие ориентации поверхности и связанного с ориентацией поля нормальных векторов, содержащего векторы, перпендикулярные к поверхности в каждой ее точке, что стало основным инструментом для измерения кривизны поверхности. Эти инструменты позволили определить два вида кривизны поверхности, известные сегодня как кривизна Гаусса К и средняя кривизна Н. Гаусс показал, что, вопреки определению, кривизна К зависит только от внутренней геометрии поверхности, доказав основную теорему теории поверхностей, так называемую Theorema Egregium. Он также определил другие основные элементы внутренней геометрии, в частности, геодезические линии как кратчайшее расстояние между двумя точками на поверхности. Им же были получены интересные результаты, следующие из внутренней геометрии, такие как отношение между углами геодезического треугольника и его кривизной.

Формула показывает, что разность между 180° (или π радиан) и суммой углов геодезического треугольника зависит от кривизны Гаусса.

Если взять полоску бумаги и соединить ее два конца, то получится лента с двумя поверхностями — внешней и внутренней, то есть двухсторонняя. Но если мы развернем один конец бумаги при склеивании, то получится лист Мёбиуса, который является односторонней поверхностью. Чтобы проверить это, достаточно провести карандашом линию по ленте и убедиться, что линия вернется в начало, пройдя по всей ленте. Эта лента имеет только одну сторону.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги