Поверхности в пространстве — это геометрические объекты, которые могут быть локально описаны двумя координатами U и V, называемыми локальными координатами. Локальная карта (Т) является телескопом, через который математик наблюдает (получается двумерное изображение) конкретную область изучаемого объекта.
В упомянутой работе Гаусс ввел понятие ориентации поверхности и связанного с ориентацией поля нормальных векторов, содержащего векторы, перпендикулярные к поверхности в каждой ее точке, что стало основным инструментом для измерения кривизны поверхности. Эти инструменты позволили определить два вида кривизны поверхности, известные сегодня как кривизна Гаусса К и средняя кривизна Н. Гаусс показал, что, вопреки определению, кривизна К зависит только от внутренней геометрии поверхности, доказав основную теорему теории поверхностей, так называемую Theorema Egregium. Он также определил другие основные элементы внутренней геометрии, в частности, геодезические линии как кратчайшее расстояние между двумя точками на поверхности. Им же были получены интересные результаты, следующие из внутренней геометрии, такие как отношение между углами геодезического треугольника и его кривизной.
Формула показывает, что разность между 180° (или π радиан) и суммой углов геодезического треугольника зависит от кривизны Гаусса.
Если взять полоску бумаги и соединить ее два конца, то получится лента с двумя поверхностями — внешней и внутренней, то есть двухсторонняя. Но если мы развернем один конец бумаги при склеивании, то получится лист Мёбиуса, который является односторонней поверхностью. Чтобы проверить это, достаточно провести карандашом линию по ленте и убедиться, что линия вернется в начало, пройдя по всей ленте. Эта лента имеет только одну сторону.
* * *