Другая модель Солнечной системы построена на основе эмпирической формулы, в которую входят числа от 1 до 4, то есть образующие Тетраксис. Это правило в 1766 году предложил немецкий математик И. Тициус, но получило оно известность после того, как его впервые опубликовал немецкий астроном И. Боде в 1772 году. Правило связывает среднее расстояние а планеты от Солнца с ее порядковым номером и выглядит следующим образом:
a = 0.1 (2n*3 + 4),
где
Это правило достаточно точно описывает радиусы первых семи планет от Меркурия до Урана. Причина столь хорошего совпадения астрономам неизвестна.
Издавна считалось, что математика – язык, который в наилучшей степени может помочь нам понять законы прекрасного. Источником красоты является гармония, упорядочивающая все части, вообще говоря различные по природе, согласно совершенным соотношениям. Человек может стать счастливым, стремясь к красоте, которую он чувствует душой.
Эти положения легли в основу множества философских теорий эпохи Возрождения и более поздних. В качестве примера приведем теорию красоты одного из титанов Возрождения флорентинца Леона Батиста Альберти, гуманиста, философа, писателя, архитектора, скульптора, художника. В его теории математика играет ведущую роль: он считает, что законы природы выражаются определенными числами, а красота – идеальный образ числа и идеальный образец для художника.
Математику пытались использовать не только для описания основных принципов развития мира и человека, но и для познания Бога. Так, Николай Кузанский, исходя из того, что божественное присутствует везде, дал начало исследованиям по интегральному и дифференциальному исчислениям, пытаясь из бесконечно малых дифференциалов сложить единый интеграл. Формально эта схема была воплощена в трудах Ньютона и Лейбница.
Ученые Нового времени, несмотря на наступление позитивизма, также видели Бога в простых и красивых математических законах.
Для эмпирика Джона Локка существовали лишь три несомненные истины – наше собственное существование, существование Бога и истинность законов математики.
Широко известно высказывание Лейбница «Cum Deus calculat, fit mundus», что значит: «Как Бог вычисляет, так мир делает». Вслед за философами Средневековья, такими, например, как Фома Аквинский, Лейбниц считал, что Бог не может действовать вопреки законам логики, но он может повелеть все, что логически возможно, и это предоставляет ему величайшую широту выбора.
Ньютон считал, что математическая красота и сила законов механики, оптики и так далее является наилучшим подтверждением существования Бога. Рассуждая об аналогиях в устройстве музыки и цвета, он писал об устройстве музыки: «…в нем содержится нечто от гармонии цветов (о которой знают художники, но о которой сам я не имею достаточно определенного суждения), подобной, может быть, созвучию тонов. Посему правдоподобным кажется сходство между крайним пурпуром (фиолетовым. –
Иммануил Кант, размышляя о возможностях познания мира, пришел к выводу, что математические понятия не могут быть извлечены из опыта, они априорны, а следовательно, всеобщи и необходимы. «Математика дает нам прекрасный пример того, как далеко мы можем продвинуться в априорном знании независимо от опыта».