В современном мире с понятием хаоса связывается неповторяющаяся, нерегулярная, беспорядочная последовательность состояний. Буквально несколько десятилетий назад считалось, что такие процессы крайне редки, а природа развивается непрерывно, без резких скачков. Действительно, вся классическая физика «механика Ньютона и Галилея, электродинамика Максвелла, статистическая физика – и отчасти современная, например квантовая теория, оперируют с понятиями функции и отображения, геометрическим образом которого является кривая или поверхность. Галилею принадлежит фраза: «Вся наука записана в великой книге – я имею в виду Вселенную, – которая всегда открыта для нас, но которую нельзя понять, не научившись понимать язык, на котором она написана. А написана она на языке математики, и ее буквами являются треугольники, окружности и другие геометрические фигуры, без которых человеку невозможно разобрать ни одного ее слова; без них он подобен блуждающему во тьме». Во времена Галилея под функцией понималось лишь то, что в современной математике называют непрерывной функцией – ее график можно нарисовать, не отрывая пера от бумаги. Такой подход к описанию природы заранее исключал возможность рассмотрения полного беспорядка – хаоса.
Однако с развитием понятия функции усложнялись и геометрические образы, которыми оперировали физики для описания природы. Достаточно сложные математические объекты – такие, например, как функция, имеющая разрыв в каждой точке (функция Дирихле), непрерывная линия, плотно заполняющая весь квадрат, или множество точек плоскости, не имеющее площади, – стали рассматриваться около 100 лет назад. Геометрические образы этих абстрактных математических объектов довольно трудно представить и невозможно нарисовать. Эти примеры могут показаться пустой игрой ума, однако существуют и природные образования, явления и процессы, для описания которых необходимо привлечение математических объектов со столь экзотическими свойствами, получивших название
Почему хаос казался экзотикой несколько лет назад? Потому что эволюцию систем со времен Лапласа принято описывать, задавая их начальное состояние и скорость его изменения; для этого и была создана прекрасно работающая на практике теория дифференциального исчисления. С математической точки зрения поведение системы в любой момент времени полностью определено, если выполняются условия существования и единственности решения соответствующего дифференциального уравнения. Долгое время считалось, что в такой определенной (детерминированной) системе не может возникать хаоса, ведь решение этого уравнения – «гладкая», то есть непрерывная и дифференцируемая, функция. Лишь на границе XIX и XX веков Анри Пуанкаре обнаружил, что в некоторой гамильтоновой механической системе могут появляться хаотические движения. Эти примеры были восприняты современниками как парадокс.
Однако сейчас стало совершенно ясно, что если речь идет о достаточно сложной нелинейной системе, то ее хаотическое состояние – скорее правило, нежели исключение, оно является неотъемлемым свойством таких реальных систем. К настоящему времени открыто множество динамических систем, в которых возникают состояния нерегулярного, хаотического движения. Прекрасной иллюстрацией служат забавные механические игрушки, появившиеся сейчас в продаже, – маятники на карданных подвесах, причудливые движения которых приковывают к себе взгляд и завораживают, подобно текущей воде или огню. Подчеркнем, что такое поведение не является следствием ни случайного возмущающего воздействия – такие воздействия не включены в модель системы, приходящей к хаосу, – ни бесконечного числа степеней свободы – хаос возникает уже в системах, описываемых тремя координатами, – ни неопределенности (классической или квантовой) в начальных данных. Причина появления хаотических режимов кроется в нелинейной природе динамической системы и ее неустойчивости, проявляющейся в необычайно быстром разбегании первоначально близких траекторий: при достаточно большом удалении состояния системы от начального включаются нелинейные механизмы, возвращающие траекторию в окрестность начальной точки; вследствие неустойчивости ее вновь отбрасывает, и за счет этого происходит беспорядочное запутывание траектории. Заметим, что в линейных моделях, с которыми работала наука XVII–XIX веков и даже начала нашего столетия, хаотических режимов не возникает – они являются свойством исключительно нелинейных систем.