Как вариант, еще можно оплатить услуги специалиста или задавать вопросы в каких-то сообществах, но это уже другие, побочные решения со своими минусами (дорого, долго, могут не ответить и т. п.).
Теперь посмотрим на
И сразу же есть варианты: либо опять же начать с книг или других конечных источников, чтобы составить общую картину, а затем идти к ИИ, либо сразу начать терзать GPT. Выберем более удобный и надежный вариант: «знания людей + ИИ».
Сначала мы изучаем общую информацию. Книги, статьи, видео и пр. Погружаемся. Вникаем. Затем, когда уже есть какое-то представление об объекте изучения и первые вопросы, можно приступать к промтингу.
Например, у нас есть вопросы по заголовкам:
Объясни, чем каждый из них плох или хорош.
Я напишу пять заголовков, скажи, какие из них лучше и почему.
Терзаем GPT…
Немного разобрались. Идем дальше и снова собираем знания:
* Об этих и других формулах поговорим в главе 10.
Что-то не получается? Скажем, ИИ дает вам тесты из своих примеров, а вам нужны тесты с вариантами ответов? Или тестирование с вариантами «правильно-неправильно»? Или еще какое-то?
Не забываем, что с нами слоган «Всегда можно спросить!».
Если ИИ выдает вам тесты с вариантами ответов, а вы хотите чего-то другого, то все исправит простенький промт:
Вот так, шажками, проникая все глубже и постигая нюансы, мы можем саморазвиваться. Если встретился какой-то большой пласт знаний, то можно снова изучить книги и статьи (чтобы разобраться в теме), а затем опять перейти к общению с нейросетью.
Да, сегодня все еще не так радужно (о минусах промтинга мы скажем отдельно), но такая стратегия реально работает и дает очень хорошие результаты, особенно в тех нишах и областях знаний, где есть некие общепринятые международные стандарты (программирование, философия, физическая культура, психология, зоология и т. д. и т. п.).