GPT уже помнит контекст, нейросети не нужно заново ставить условия. Мы лишь поправляем ИИ, вводя в нужные нам рамки. В итоге снова получаем три блюда, но уже с учетом прошлых ошибок. И теперь ни в одном нет «запрещенки». Вот один из примеров.
Ингредиенты:
• 1 кг картофеля;
• 500 г курятины;
• 1 луковица;
• 2 моркови;
• 2–3 зубчика чеснока;
• 2–3 помидора;
• соль и перец по вкусу.
Приготовление:
1. Картофель…
Далее мы будем стараться не цитировать ответы GPT (только несколько раз в виде исключений). Все же не совсем правильно разбавлять авторский текст постоянными ответами ИИ.
Если бы мы пошли дальше, то могли бы попросить советы по сокращению времени готовки или, например, вытянули из ИИ какой-нибудь интересный соус из оставшихся продуктов. Повернуть можно куда угодно – этим промтинг и замечателен.
Конечно, картошка в томатном соусе – не высший пилотаж работы с подсказками, и все же пример отлично передает суть. Если мы умеем «управлять» ИИ, то GPT делает массу нужного и полезного. А если мы еще и креативны, опытны, знаем варианты «маневров», это лишь усиливает эффект.
Кому и где пригодятся навыки промтинга? Самое смешное, что практически всем и везде. Приведем буквально несколько примеров случайных ситуаций.
Промтинг – это не унылые и однообразные действия (хотя порой случаются и они), а полноценный творческий процесс, содержащий поиск путей, новые открытия и неожиданные решения. По сути, это огромная территория, где можно пойти куда угодно и как угодно.
Если бы можно было сделать какой-то емкий, но максимально описательный слоган для промтинга, мы бы предложили такой:
«Всегда можно спросить!»
О чем? А вот обо всем. Вообще обо всем. И это не дежурная фраза, а, скорее, совсем иной уровень вашего опыта.
Работа с подсказками – это не только рост качества ответов или закрепления интересных ходов, это всегда еще и «перенастройка» мозга.
Например, если мы уже более или менее привыкли, что есть поисковики, которые знают ответы на множество вопросов, то работа с подсказками – совсем иной, куда более глубокий уровень.
Объем и направление запросов – безграничны. Чем больше человек работает с нейросетью, тем больше он видит точек опоры и вариантов решений.
Поначалу мы не очень умеем опираться на GPT. Наш опыт «работы с машиной» все еще ограничивается максимум поисковиками: вводим запрос – получаем список статей, видео и т. д.
А вот то, что мы сами можем сконструировать схему получения ответов, наш мозг еще пока не понимает. Не привык. Не охватывает.
Пример мышления промтера
Скажем, вы хотите стать копирайтером. Что нам обычно подсказывает опыт?
Как выглядит
Посмотреть в поисковиках запросы типа «как стать копирайтером», «книги про копирайтинг», «что нужно уметь копирайтеру» и т. п. Найти по ним статьи, книги и прочие носители и изучить их.
Суть обычного решения выглядит так.
Мы берем подходящую информацию, оценивая ее как конечный набор знаний. Все, что можно было «вытянуть» из внешних источников, мы вытянули. Если мы не поняли какие-то данные, что-то было недостаточно раскрыто в статьях (книгах и т. п.) или у нас есть сомнения, то мы со всем этим так и останемся один на один.