} // разблокировано!
Когда lock
уничтожается, mutex_
разблокируется. Если lock
конструируется для объекта mutex
, который уже заблокирован другим потоком, текущий поток переходит в состояние ожидания до тех пор, пока lock
не окажется доступен.
Такой подход поначалу может показаться немного странным: а почему бы мьютексу mutex
не иметь методы lock
и unlock
? Применение класса scoped_lock
, который обеспечивает блокировку при конструировании и разблокировку при уничтожении, на самом деле более удобно и менее подвержено ошибкам. Когда вы создаете блокировку, используя scoped_lock
, мьютекс блокируется на весь период существования объекта scoped_lock
, т.е. вам не надо ничего разблокировать в явной форме на каждой ветви вычислений. С другой стороны, если вам приходится явно разблокировать захваченный мьютекс, необходимо гарантировать перехват любых исключений, которые могут быть выброшены в вашей функции (или где-нибудь выше ее в стеке вызовов), и гарантировать разблокировку mutex
. При использовании scoped_lock
, если выбрасывается исключение или функция возвращает управление, объект scoped_lock
автоматически уничтожается и mutex
разблокируется.
Использование мьютекса позволяет сделать всю работу, однако хочется немного большего. При таком подходе нет различия между чтением и записью, что существенно, так как неэффективно заставлять потоки ждать в очереди доступа к ресурсу, когда многие из них выполняют только операции чтения, для которых не требуется монопольный доступ. Для этого в библиотеке Boost Threads предусмотрен класс read_write_mutex
. Пример 12.3 показывает, как можно реализовать пример 12.2, используя read_write_mutex
с функцией-членом front
, которая позволяет вызывающей программе получить копию первого элемента очереди без его выталкивания.
#include
#include
#include
#include
template
class Queue {
public:
Queue() : // Использовать мьютекс чтения/записи и придать ему приоритет
// записи
rwMutex_(boost::read_write_scheduling_policy::writer_priority) {}
~Queue() {}
void enqueue(const T& x) {
// Использовать блокировку чтения/записи, поскольку enqueue
// обновляет состояние
boost::read_write_mutex::scoped_write_lock writeLock(rwMutex_);
list_.push_back(x);
}
T dequeue() {
// Снова использовать блокировку для записи
boost::read_write_mutex::scoped_write_lock writeLock(rwMutex_);
if (list_.empty())
throw "empty!";
T tmp = list_.front();
list_.pop_front();
return(tmp);
}
T getFront() {
// Это операция чтения, поэтому требуется блокировка только для чтения
boost::read_write_mutex::scoped_read_lock.readLock(rwMutex_);
if (list_.empty())
throw "empty!";
return(list_.front());
}
private:
std::list
boost::read_write_mutex rwMutex_;
};
Queue
void sendSomething() {
std::string s;
for (int i = 0, i < 10; ++i) {
queueOfStrings.enqueue("Cyrus");
}
}
void checkTheFront() {
std::string s;
for (int i=0; i < 10; ++i) {
try {
s = queueOfStrings.getFront();
} catch(...) {}
}
}
int main() {
boost::thread thr1(sendSomething);
boost::thread_group grp;
grp.сreate_thread(checkTheFront);
grp.create_thread(checkTheFront);
grp.сreate_thread(checkTheFront);
grp_create_thread(checkTheFront);
thr1.join();
grp.join_all();
}
Здесь необходимо отметить несколько моментов. Обратите внимание, что теперь я использую read_write_mutex
.
boost::read_write_mutex rwMutex_;