Комбинаторный метод Ферма, который в письме к Каркави от 9 августа 1654 года выражал бесконечное восхищение талантом молодого Паскаля и считал его способным довести до успешного конца любые начинания, известен из послания Блеза знаменитому тулузцу, датированного 24 августа 1654 года. Полученный разными методами одинаковый результат заставляет Блеза в письме к Ферма высказать свое удовольствие по поводу того, что “истина одна и та же и в Париже и в Тулузе”. Хотя в процессе переписки выявились некоторые расхождения, они быстро устранились, и 27 октября 1654 года Паскаль отвечает своему корреспонденту: “Ваше последнее письмо меня полностью удовлетворило.
Я восхищаюсь вашим методом раздела ставки, тем более что вполне его понимаю; он целиком ваш, не имеет ничего общего с моим и легко приводит к той же цели. Итак, наше взаимопонимание восстановлено”.
Дальнейшее развитие новой отрасли математики связано с успехами естествознания и статистики и с именами таких известных ученых, как Бернулли, Лаплас, Пуассон, Чебышев и другие. Следует, однако, заметить, что возможности этого развития и философского углубления теории вероятностей содержались и в собственных, видимо не осуществленных планах Паскаля. Когда в конце 1654 года Блез направил “знаменитейшей Парижской математической академии наук” послание с перечислением своих работ, он указал среди них “совершенно новый трактат о случайных комбинациях, которым подчинены азартные игры”, где “колебания счастья и удачи подчиняются рассуждениям, опирающимся на справедливость и ставящим себе целью, чтобы каждый игрок неизменно получал то, что ему по праву точно причитается. Это тем в большей мере должно определяться усилиями разума, чем в меньшей мере может быть найдено из опыта. Ведь неопределенный исход явления теснее связан со случайностью, чем с законами природы. Поэтому подобные вопросы оставались нерешенными; теперь же то, что не поддавалось опыту, не может избегнуть власти разума, и мы с тем большей уверенностью подчинили их искусству математики, чтобы, овладев ими отчасти, смелее продвигаться вперед. Так математическая строгость доказательств сочетается с неопределенностью случайного и тем соединяет кажущиеся противоположности. От этой двойственности метод заимствует свое наименование, дерзко присваивая себе по праву нелепое название “математика случайного”».
Однако “нелепость” и “дерзость” “математики случайного” в значительной мере устранялись тем, что в теории вероятностей, зарождавшейся из азартных игр, случай лишался своего абсолютного значения и подлинности (внезапности, неожиданности, таинственности) и превращался в реальную возможность, функционально зависимую от ожидания исполнения заранее принятых условий. Деньги, поставленные игроками на кон, писал сам Паскаль, уже не принадлежат им; но, теряя денежную собственность, игроки “приобретают право ожидания того, что случай может им дать согласно заранее оговоренным условиям”.
Предварительные “правила игры” поддаются абстрактному комбинаторному исчислению и позволяют решать частные вероятностные задачи более общими методами. Так, у Паскаля имеется общее решение о разделении ставки между двумя игроками на основе изучения арифметического треугольника, названного впоследствии его именем.
“Трактат об арифметическом треугольнике” создан в период переписки с Ферма (издан в 1665 году) и тесно связан с обобщением возникших в ней комбинаторных проблем.
В своем трактате он излагает свойства и соотношения членов разностных рядов и биноминальных коэффициентов, описывает двадцать основных следствий, вытекающих из непосредственного рассмотрения арифметического треугольника, а в небольших приложениях к трактату разбирает возможности использования этого треугольника для изучения числовых порядков и сочетаний, для определения раздела ставок между игроками и степеней биномов.
Антиалгебраизм Паскаля, неприязнь к отвлеченным формулам, сказавшиеся уже в его первых математических работах, обнаруживаются и в “Трактате…”, где свойства чисел хотя и выводятся в общем виде, но описательно, с конкретными доказательными примерами, без алгебраических символов. Так, например, при определении коэффициентов степеней бинома Блез не искал априорных формул для их исчисления, а записывал их друг за дружкой, переходя от низших степеней к высшим, что не позволило ему, по словам одного французского исследователя научного творчества Паскаля, сделать открытие Ньютона: “Паскалю не хватило одного росчерка пера для написания формулы, дающей коэффициент