Читаем Беседы об информатике полностью

Пойдем дальше. Читателю уже ясно, что есть все основания уподобить интегральную схему молекуле нуклеиновой кислоты. И та и другая представляет собой последовательность структурных элементов. В случае нуклеиновой кислоты — это нуклеотиды, а в случае интегральной схемы — транзисторы. И в том и в другом случае интегральные схемы соединяются между собой определенным образом. Некоторое отличие состоит, правда, в том, что транзистор принимает одно из двух состояний (замкнуто — разомкнуто), а нуклеотид — одно из четырех состояний. Но это чисто количественное различие, и оно легко снимается, если одному нуклеотиду ставить в соответствие не один, а, скажем, два транзистора.

Подобную аналогию имеет смысл продолжить и сравнить соответствующие количественные характеристики, прежде всего размеры. Размеры одного структурного элемента молекулы нуклеиновой кислоты измеряются величиной порядка нескольких десятых долей нанометра (10–10 м). Расчет предельных размеров структурного элемента интегральной схемы потребует от нас некоторых размышлений. Что надо вспомнить прежде всего?

Чтобы получить либо электронный, либо дырочный полупроводник, к чистому кремнию добавляют ту или иную примесь, причем требуемые эффекты получаются, если один атом примеси приходится примерно на сто миллионов атомов чистого полупроводника.

Отсюда ясно, что структурный элемент интегральной схемы при всех условиях не может содержать меньше чем сто миллионов атомов. В противном случае ему просто не достанется того единственного атома примеси, который и определяет его рабочие свойства.

В течение довольно длительного времени считалось, что на этом расчеты и заканчиваются. Достаточно иметь хотя бы один электрон в свободной зоне или одну дырку в валентной зоне, чтобы реализовать те эффекты, которые были описаны выше. Сейчас настал удобный момент продемонстрировать читателю, насколько в самом деле были необходимы все рассуждения о свойствах электронов и вообще элементарных частиц, которые мы с такой щедростью развивали на предыдущих страницах. Все дело в том, что один-единственный электрон вообще ведет себя совсем не так, как мы ожидаем. Чтобы понять это, обратимся снова к соотношению неопределенностей.

Мы хотим, чтобы наш единственный электрон находился где-то в пределах структурного элемента, состоящего из ста миллионов атомов. Сто миллионов атомов в кристаллической решетке при среднем расстоянии между атомами 10–10 метра (одна десятая нанометра) занимают кубик с длиной ребра порядка 10–7 метра. Такова максимальная неопределенность координаты электрона, если мы настаиваем, что он находился в пределах структурного элемента. Но подобной неопределенности в координате соответствует неопределенность величины импульса электрона порядка 10–22 грамм-сантиметра в секунду. Применительно к электрону это огромная величина. Чтобы оценить ее, воспользуемся понятием о скорости, которое вообще-то к электрону неприменимо. Если бы электрон был классической частицей, то импульсу 10–22 грамм-сантиметра в секунду соответствовала бы скорость такой частицы порядка 105 сантиметров в секунду (масса электрона имеет порядок 10–27 грамма).

Эти цифры мы привели для убедительности, а также для тех читателей, которые достаточно хорошо знакомы с физикой и захотят проверить наши выкладки. Так или иначе, а суть состоит в том, что по той лишь единственной причине, что электрон оказывается локализованным в пределах структурного элемента, он обладает огромным импульсом, направленным совершенно произвольно. Бессмысленно ожидать от него какого-то упорядоченного поведения.

Таково конкретное проявление давно установленного физикой факта, что электрон представляет собой квантовомеханический объект и его поведение может быть описано только в терминах вероятностей. Что это значит в рассматриваемом нами случае?

Если наш единственный электрон поместить в электрическое поле, появится некоторая отличная от нуля вероятность того, что у импульса электрона возникнет некоторая постоянная составляющая, направленная в ту же сторону, что и поле. Но вероятность еще не достоверность. Вероятность вероятностью, а реальный импульс может быть направлен куда угодно и иметь величину, на несколько порядков большую, чем та, которую мы ожидаем в результате воздействия поля.

Задача состоит в том, чтобы превратить вероятность в достоверность. Как это делается, мы знаем. Надо взять много электронов. Настолько много, чтобы, как говорят специалисты по теории вероятностей, начал удовлетворяться закон больших чисел. Обстоятельство, имеющее чрезвычайно важное, чтобы не сказать — фундаментальное значение.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука