Описанная структура получила название полевого транзистора, или, точнее, МОП-транзистора с индуцированным каналом. Аббревиатура МОП составлена из первых букв слов «металл», «окись», «полупроводник», что соответствует структуре затвора, и в этом легко убедиться, бросив еще один взгляд на рисунок 7. Слова «с индуцированным каналом» означают, что нормально канал отсутствует (контакты разомкнуты) и возникает лишь при подаче напряжения на затвор.
Даже из столь краткого рассмотрения видно, что МОП-транзисторы обладают несомненными преимуществами по сравнению с биполярными. Исторически биполярные транзисторы появились первыми, поэтому до сих пор они еще довольно широко используются. Однако сейчас в мире наблюдается четкая тенденция к переходу на МОП-транзисторы.
Когда появились транзисторы (это произошло в конце 40-х годов), а главное, когда стало понятно, что их можно использовать в роли контактов реле для построения рассуждающих систем, свершился первый качественный скачок в той отрасли науки и техники, который сегодня называют информатикой. Благодаря транзисторам начали строить достаточно мощные системы переработки информации, занимающие вполне разумные габариты, скажем, порядка одного кубического метра и потребляющие разумные количества энергии, скажем, в пределах сотен ватт.
По темпам своего развития информатика побила все существовавшие до нее рекорды. Это справедливо даже применительно к такой прогрессивной области, как космическая техника. Слов нет, выход человечества в космос совершенно уникальное событие, в своем роде единственное в истории человечества, и переоценить его невозможно. Но давайте обратимся к цифрам. Первые самолеты, появившиеся в начале XX века, имели скорость порядка нескольких сот километров в час. Ракетоноситель межпланетного корабля развивает вторую космическую скорость, то есть 11 километров в секунду, или около 40 тысяч километров в час. Таким образом, за время от начала века до старта космической эры скорость летательных аппаратов возросла, будем считать, в 400 раз. Цифра впечатляющая! Но переход от реле к транзисторам, который совершился за каких-нибудь 15 лет, привел к увеличению быстродействия ЭВМ в несколько десятков тысяч раз.
И все же не это главное. Воистину революционные изменения в информатике наметились тогда, когда стало ясно, что на одной полупроводниковой пластине совсем необязательно изготовлять один-единственный транзистор. Что нужно для изготовления транзистора? Прикрыть поверхность полупроводниковой пластины металлической фольгой, к примеру, с двумя (для изготовления истока и стока), а потом с одним отверстием. Но если в той же фольге проделать четыре отверстия, получатся два транзистора. Если сделать двадцать отверстий, получится десять транзисторов и т. д.
Не составляет большого труда изготовить соединения между выводами транзисторов. Это делается двумя способами. Либо на поверхность пластины, опять-таки через отверстие нужной конфигурации в металлической фольге, напыляется металл, либо в нужные области пластины вводятся примеси. Напомним, что полупроводник с примесями ток проводит, а без них практически не проводит.
Так появилось то, что сегодня называют интегральной схемой. Какая главная особенность интегральных схем? Интегральная схема, содержащая тысячу транзисторов, отличается от схемы с десятью транзисторами только количеством отверстий в соответствующих листочках фольги, используемых при изготовлении интегральных схем. Эти листочки называют масками. В остальном технологические операции остаются одинаковыми как в случае десяти, так и в случае десяти тысяч транзисторов. Отсюда вывод: сложность изготовления интегральной схемы с тысячью транзисторов, а следовательно, и ее стоимость — та же самая, что и у интегральной схемы с десятью транзисторами.
Что значит изготовить интегральную схему? Это значит поместить атомы примеси в нужные места кристаллической решетки исходного полупроводника (чаще всего кремния). Извлечь такой атом из соответствующего узла кристаллической решетки не так-то просто. Конечно, пластинку кремния можно расплавить, можно разбить ее молотком на мелкие части, но до тех пор, пока она не подвергается столь грубым воздействиям, извлечь однажды внедренные атомы примеси практически невозможно. Интегральная схема поистине способна все вытерпеть. Дешевизна и чрезвычайно высокая надежность — две основные важнейшие характеристики интегральных схем.