Читаем Беседы об информатике полностью

Вопрос непростой. Различных аргументов как за создание искусственного разума, так и против его создания великое множество. Но есть соображение, достаточно очевидное. Человек в огромной степени подвержен влиянию внешней среды. Понизится температура его тела на каких-нибудь десять градусов — и ни о каком мышлении не может быть и речи. То же самое справедливо для нагревания, изменения состава воздуха и многого-многого другого. Одним из поводов создания ЭВМ и послужило стремление создать систему, которая вытерпела бы если не все, то, во всяком случае, гораздо большие изменения в окружающей среде, чем это возможно для человеческого организма.

Но из чего делать искусственный разум? Может быть, имеет смысл постараться скопировать живую клетку? Существует много сторонников метода создания инженерных конструкций путем копирования у живой природы. Строго говоря, с этого мы и начали. Конструкция игрушки «Мужик и медведь» и спроектированного нами аппарата для решения задачи о волке, козе и капусте основана на тех же исходных принципах, что и живая клетка.

Да-да, не удивляйтесь! И в том и в другом случае операции по переработке информации выполняются за счет перемещения в пространстве некоторых объектов. Только в наших устройствах перемещаются рычаги да защелки, а в клетке — молекулы.

Любое механическое перемещение — процесс относительно медленный. Подобный путь сразу показался инженерам недостаточно эффективным. Вспомните — женщина требовала быстрых реакций на свои капризы. С самой большой в природе скоростью распространяются электромагнитные поля, в частности, движется электрический ток. Без особых колебаний инженеры пришли к выводу, что, как сейчас говорят, носителями информации в ЭВМ должны быть явления электромагнитной природы. Электромагнитное явление, переносящее информацию, получило название сигнала.

Какому основному требованию должны отвечать электромагнитные сигналы для использования их в качестве переносчиков информации? Читатель уже достаточно подготовлен к тому, чтобы сразу ответить на этот вопрос. Должно быть несколько сигналов, отчетливо различающихся друг от друга. Точно так же, как отличаются друг от друга четыре нуклеотида, двадцать аминокислот, правое и левое положения рычажка. Проблема создания ЭВМ свелась к тому, чтобы научиться управлять электромагнитными явлениями и каждый раз получать какой-то один среди заданного разнообразия сигналов.

У себя дома вы управляете электромагнитными явлениями, а попросту говоря, зажигаете и гасите свет, включаете и выключаете телевизор. Делаете вы это с помощью выключателя, представляющего собой пару механических контактов, которые могут быть замкнуты или разомкнуты. В первых ЭВМ, которые условно отнесем к нулевому поколению, также использовались механические контакты. Они размыкались или замыкались при пропускании тока через обмотку электромагнита. Такая конструкция получила название электромагнитного реле.

Что любопытно? С помощью электромагнитных реле с одной-единственной парой контактов принципиально можно построить устройство, способное решать любые задачи по переработке информации. Электрические сигналы при этом имеют одно из двух значений. Например, контакт замкнут, ток течет — единица. Контакт разомкнут, ток не течет — ноль. Иными словами, с помощью реле создают электрические сигналы, передающие значения двоичных символов.

Реле с нормально замкнутым контактом реализует Булеву операцию НЕ. Действительно, ток течет в обмотке электромагнита (на входе обмотки единица), контакт разомкнут, и в его цепи ток отсутствует (на выходе цепи контакта ноль). В цепи обмотки электромагнита ток не течет (на входе ноль), контакт замкнут, в его цепи течет ток (на выходе единица). Два реле, контакты которых включены параллельно, реализуют операцию ИЛИ, а два реле, контакты которых включены последовательно, реализуют операцию И. Как говорится, что и требовалось доказать.

Операции, выполняемые электромеханическими реле над электрическими сигналами, составляют функционально полную систему. Следовательно, с их помощью можно создать устройство, способное решать любую задачу по переработке информации, в том числе творческую.

В гостях у муз

По всей вероятности, здесь стоит сделать небольшое отступление. Не кажется ли вам, что как-то уж очень легко мы расправляемся с понятиями «творчество», «мышление», «разум», сводя все к каким-то там замыканиям и размыканиям?

Перейти на страницу:

Все книги серии Эврика

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука