Читаем Беседы об информатике полностью

Н. Винеру повезло в том смысле, что, во-первых, он сформулировал свои требования к электронной вычислительной машине тогда, когда потребность в таких машинах ощущалась особенно остро, а во-вторых, поскольку прототипы подобных машин уже существовали, имелась полная возможность судить о том, насколько эти требования реалистичны.

Стоит упомянуть о мечте Н. Винера и А. Розенблюта создать общество независимых ученых, работающих вместе не под началом какого-нибудь высокопоставленного чиновника, а объединенных желанием понимать науку как нечто цельное и передавать друг другу такое понимание. Если говорить о науке управления, то подобная мечта осуществилась еще до второй мировой войны, но не в США, а у нас в СССР.

В 1939 году при Академии наук СССР была создана комиссия, именно комиссия, в известном смысле свободное содружество, по вопросам автоматического управления. В 1940 году комиссию преобразовали в Институт автоматики и телемеханики Академии наук СССР. Не правда ли, автоматика и телемеханика — всего лишь другие слова, обозначающие те же понятия управления и связи? Не добавили только «в животном и машине», но в этом не было нужды, поскольку вопрос был ясен с самого начала. Первым директором Института автоматики и телемеханики назначили академика В. Кулебакина (1891–1970), специалиста по самолетостроению и автоматическому управлению (судите сами, случайно ли такое совпадение).

Разговоры о чудесах автоматики велись не только в институтах, но и дома за чайным столом. В этой связи вспоминаются встречи с академиком Н. Лузиным, также работавшим в Институте автоматики и телемеханики АН  СССР. Н. Лузин был чистым математиком, и все же одна из основных его работ того времени «К изучению матричной теории дифференциальных уравнений» была напечатана в журнале «Автоматика и телемеханика» № 5 за 1940 год.

Н. Лузин был прекрасным рассказчиком, причем эти его черты особенно ярко проявлялись именно за чайным столом. Он не грешил против истины, но свои рассказы о будущем вычислительной техники ухитрялся облекать в такую форму, что, как говорится, мороз подирал по коже.

Примерно в середине 30-х годов советский физик В. Шестаков, американский математик и инженер К. Шеннон и японский инженер А. Никасима обратили внимание на то, что некоторые структуры электрических схем, состоящих из реле, сильно напоминают структуры, изучаемые в математической логике. Практически одновременно с исследованиями В. Шестакова и К. Шеннона были опубликованы также статьи советского инженера В. Розенберга и австрийской исследовательницы И. Пиш (изложившей результаты, полученные ее научным руководителем О. Плехелем).

В аналогии между электрическими схемами, состоящими из реле, и структурами, изучаемыми в математической логике, советский ученый, в будущем глава школы математических логиков М. Гаврилов увидел средство создать математический аппарат для формального синтеза схем, состоящих из реле.

Рождение оригинального взгляда на хорошо известные к тому времени по автоматическим телефонным станциям релейно-контактные схемы проходило не гладко. М. Гаврилова обвиняли во многих грехах. Защита его докторской диссертации напоминала сражение. Сражение это закончилось победой нового — диссертацию утвердили в 1947 году.

Следует ли усматривать в истории с диссертацией М. Гаврилова недоверчивое отношение к кибернетике? Во-первых, слово «кибернетика» тогда не было принято. Во-вторых, все новое пробивает себе путь с трудом. Так, по-видимому, и должно быть. В противном случае слишком легко рождались бы истины-однодневки, которые хотя и развенчиваются за короткое время, но успевают наделать много вреда. Наконец, в любой критике, сколько бы тенденциозной она ни была, всегда содержится крупица истины. Например, если бы М. Гаврилов предложил свой математический аппарат для синтеза релейно-контактных схем, не упоминая при этом логику, он наверняка избавил бы многих от лишних бесплодных размышлений, а подчас и заблуждений.

Обратная связь

Закономерности передачи информации и управления в живых организмах восходят к условным и безусловным рефлексам, которые глубоко и всесторонне исследовал академик И. Павлов (1849–1936). Работы эти продолжили его ученики. В 1935 году физиолог П. Анохин ввел понятие обратной афферентации, по содержанию близкое к одному из основополагающих в кибернетике.

В очередной раз в этой беседе дадим слово Н. Винеру:

Перейти на страницу:

Все книги серии Эврика

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука

Все жанры