В инфракрасной астрономии телевизионный телескоп уже продемонстрировал свою силу. Если наблюдения ведутся в инфракрасной части спектра, перед видиконом — передающей телевизионной трубкой — устанавливают фильтр из кремния или особого стекла, который пропускает только инфракрасное излучение. Эти лучи попадают на тонкий слой полупроводникового материала, в разных частях которого создается разное электрическое сопротивление — в «светлых» меньше, в «темных» больше (речь идет, повторяем, об инфракрасном невидимом изображении). Таким образом, на полупроводниковой «мишени» видикона создается электрическое изображение объекта, которое затем и передается в приемный телевизор. На экране же последнего невидимое изображение становится видимым, потому что люминесцентный приемный слой кинескопа излучает видимые лучи. Теперь уже ничто не мешает сфотографировать невидимое, получить снимок небесного тела в инфракрасных лучах.
Еще в 1962 году Н. Ф. Купревич таким способом получил очень любопытные инфракрасные фотографии Луны. Картина получилась во многом отличная от того, что видит глаз.
Лунное Море Облаков обычно выглядит равниной с неопределенными пятнами и небольшим числом кратеров. В инфракрасном свете видны кольцевые горы, заполняющие все пространство моря. А вот светлые лучи, расходящиеся от кратера Тихо, в инфракрасном свете оказались совокупностью мелких, вытянутых в полоску кратеров — открытие, лишь через несколько лет подтвержденное средствами космонавтики. Там, где вокруг кратера Коперник глаз видит темные пятна, инфракрасный телевизионный телескоп?. Ф. Купревича зафиксировал кратеры с резко выраженной структурой. Неожиданным было и то, что Море Дождей оказалось бугристой областью, усеянной множеством невидимых глазом кратеров. Подобные открытия были сделаны и в других районах Луны.
Астрономы Крымской обсерватории А. И. Абраменко и Е. С. Агапов с помощью 50-сантиметрового телескопа с присоединенным к нему телевизионным устройством наблюдали звезды 21-й звездной величины. Без помощи телевидения тот же телескоп фиксирует лишь звезды не слабее 18-й звездной величины.
Все это, конечно, только первые шаги. Но перспективы весьма заманчивы. В созвездии Стрельца, там, где Млечный Путь становится более широким и ярким, должно находиться центральное сгущение нашей звездной системы — ядро Галактики. В этом направлении сгущаются звезды, звездные скопления, туманности. Здесь, именно здесь, должно находиться огромное шаровидное скопище звезд, подобное тем, которые хорошо различимы на снимках ближайших галактик.
Но его нет, галактическое ядро мы не видим. А в том месте неба, где ему следовало бы быть, наблюдается своеобразный темный «провал», выделяющийся на фоне Млечного Пути.
Причина несоответствия теории и наблюдений понятна. Ядро Галактики скрыто от нас огромными протяженными облаками темной космической пыли. Они обволакивают центральные области нашей звездной системы, делают их невидимыми. И все-таки увидеть ядро Галактики можно. Помогла решить эту задачу телевизионная техника.
В 1948 году советские астрономы В. Б. Никонов, А. А. Калиняк и В. И. Красовский исследовали окрестности галактического ядра, а несколько ранее и менее удачно их американские коллеги попытались сфотографировать невидимое галактическое ядро. Прибор, позволяющий это сделать, получил ныне широкое признание в инфракрасной астрономии. Называется он электронно-оптическим преобразователем.
Основа прибора — полупрозрачный кислородно-цезиевый фотокатод. Его помещают в фокус телескопа и с помощью инфракрасного фильтра (вроде тех, о которых говорилось) направляют на него инфракрасные лучи от небесного тела. Кванты инфракрасного излучения хотя и менее энергичны, чем кванты видимого света, но все же, ударяясь о фотокатод, выбивают из него электроны, которые на специальном экране создают видимое глазом изображение.
Не зря этот прибор называется преобразователем. Он и на самом деле преобразует инфракрасное изображение в видимое. Благодаря ему и удалось впервые увидеть окрестности ядра Галактики. Спустя два десятилетия американские астрономы аналогичным способом исследовали и самое ядро нашей звездной системы.
Если бы какой-нибудь фантастический пылесос убрал из Галактики всю межзвездную среду, то есть пыль и газы, заполняющие межзвездное пространство, то ядро Галактики предстало бы перед нами огромным, причудливым светилом. Мы видели бы летними ночами в созвездии Стрельца шаровидное, слегка сплюснутое скопище звезд, поперечник которого в 36 раз превышал бы видимый диаметр Луны. Земные предметы, освещенные зеленовато-желтым светом галактического ядра, отбрасывали бы заметные тени.
Природа лишила нас этого необыкновенного зрелища. Но человек способен преодолеть любые преграды — инфракрасная техника раскрыла перед нами невидимые глазом звездные дали.
Нейтринные телескопы