Читаем Астрономы наблюдают полностью

Объяснение это неточно. В видимых глазом лучах туманность Северная Америка также излучает, но очень слабо. К тому же она весьма разрежена, и потому ее поверхностная яркость очень мала. Может быть, когда-нибудь в будущие сверхмощные оптические телескопы ее и увидят.

В ультрафиолетовых лучах звездное небо стало бы для нас неузнаваемым (как, впрочем, и в других невидимых лучах спектра). Самой яркой звездой вместо Сириуса оказалась бы звезда Дзета из южного созвездия Кормы. Она выглядела бы примерно такой же яркой, как Венера. В Северном полушарии неба выделялась бы Дзета Ориона, самая левая звезда в его «поясе». Необычно яркими выглядели бы и некоторые особенно горячие звезды.

Рис. 45. Фотография туманности «Северная Америка».

Самое же удивительное на ультрафиолетовом небе — обилие огромных, ярко светящихся туманностей. Одна из них заняла все созвездие Ориона. Это продолжение той части туманности Ориона, которую с трудом, в виде крохотного слабо светящегося пятнышка, различает глаз.

Из других похожих огромных светящихся пятен особенно примечательна исполинская ультрафиолетовая туманность, окутывающая Спику — главную звезду созвездия Девы. В ультрафиолетовых лучах она казалась бы очень яркой, почти круглой, с поперечником, в 50 раз большим видимого диаметра полной Луны. А вот сама Спика при этом была бы почти не видна — ее ультрафиолетовое излучение сравнительно слабо.

Необычен невидимый ультрафиолетовый космос. И в этом невидимом непременно надо тщательно разобраться.

<p>Телевидение в астрономии</p>

В самом начале второй половины текущего века астроному Пулковской обсерватории?. Ф. Купревичу пришла в голову счастливая идея — использовать телевидение для астрономических наблюдений[13]). Принцип действия телевизионного телескопа, в сущности, прост, — это сочетание обычного оптического телескопа с приемным и передающим телевизионным устройством.

Можно проделать нехитрый опыт — направить телескоп на Солнце, а за его окулярной частью поместить белый экран. Тогда, как известно, на экране появится изображение Солнца. Чем дальше отодвинут экран от окуляра, тем оно будет крупнее. Но, выигрывая в размерах, изображение Солнца теряет в яркости. Наоборот, вблизи окуляра яркость изображения возрастает настолько, что крошечное ослепительное «солнце» прожжет бумагу.

Если телескоп навести на Луну, можно на экране получить и ее изображение. Разумеется, изобразятся на экране и планеты, и звезды, и другие небесные объекты, но только яркость изображения получится несравнимо меньшей, чем для Луны.

Теперь представьте себе, что там, где находится экран, помещена передающая телевизионная трубка — та самая, которой пользуются в телевизионных студиях. Мы не станем разбирать ее устройство — это увело бы нас далеко от темы книги. Отметим лишь главное: передающая трубка превращает оптическое изображение в электрические сигналы. Эти сигналы можно с помощью радиоволн передать на большое расстояние, где они будут приняты антенной телевизора, причем последний снова превратит их в изображение. А можно телевизор поместить тут же, в обсерватории, и на экране его кинескопа наблюдать то, что происходит на небе.

Такова идея, таков основной принцип. Техническое воплощение этого принципа — телевизионный телескоп. Этот новый метод астрономических наблюдений имеет ряд преимуществ по сравнению с традиционными. Изображение астрономического объекта можно передать на большие расстояния.

На экране кинескопа можно получать очень крупные, подробные изображения. Удается «накапливать» изображение в виде электрических зарядов на люминесцирующем слое кинескопа, а потом рассматривать или фотографировать его. Расчеты показывают, что таким способом в недалеком будущем на заатмосферных обсерваториях удастся получить изображения звезд 34-й звездной величины — в десятки тысяч раз более слабых, чем те, которые ныне на пределе видимости доступны современным телескопам. Есть и другие достоинства телевизионных телескопов, но следует, конечно, отметить и их главный недостаток — громоздкость оборудования. Непостоянство изображения на экране телевизионного телескопа (перерывы в чередовании кадров) мешает четкому фотографированию объекта.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука