Солнце для радиолокатора гораздо более крупная цель, чем Венера. Но зато Солнце — само мощный источник космических радиоволн. Чтобы эти радиоволны не «заглушили» радиоэхо, отраженный от Солнца радиосигнал должен быть по крайней мере в сто раз сильнее сигнала, отраженного от Венеры.
Радиолокация Солнца впервые проводилась так. Передатчик включался с интервалами в 30 секунд в продолжение 15 минут. Наблюдения начались в сентябре 1958 года и были продолжены весной 1959 года. При обработке также пришлось прибегнуть к помощи электронных вычислительных машин. В хорошем согласии с предварительными расчетами получилось, что радиосигнал, посланный с Земли, отразился от тех слоев солнечной короны, которые находятся на расстоянии 1,7 радиуса Солнца от его поверхности.
Еще в 1959 году радиолокация Меркурия показала, что сутки на этой планете близки к 59 земным суткам, то есть Меркурий не обращен всегда к Солнцу одной стороной, как считалось до этого. Радиолокаторы выяснили также, что сутки на Венере в 243 раза длиннее земных, причем Венера вращается в направлении с востока на запад, то есть в сторону, обратную вращению всех остальных планет.
Радиолуч сквозь облака Венеры «прощупал» ее рельеф и установил существование на Венере кратеров, подобных лунным. Радиолокация уточнила данные о рельефе Марса. Но самое, пожалуй, удивительное было достигнуто в метеорной астрономии.
Метеоры наблюдают днем
Звездная ночь. В невообразимой дали тихо сияют тысячи солнц. И вдруг как будто одна из звезд сорвалась и полетела, оставляя на небе узенькую светящуюся полоску. Все явление обычно занимает доли секунды, реже несколько секунд.
Так выглядят «падающие звезды», или метеоры, — явления, хорошо знакомые каждому еще с детских лет. Читателю, конечно, известно, что «падающие звезды» не имеют никакого отношения к настоящим звездам — далеким солнцам. Когда по небу пролетает «падающая звезда», это означает, что в земную атмосферу из безвоздушного мирового пространства вторглась крохотная твердая частичка весом в граммы или даже доли грамма — метеорное тело.
Двигаясь со скоростью в десятки километров в секунду, метеорное тело сильно сжимает перед собой воздух. Он ярко светится, образуя спереди метеорного тела так называемую «воздушную подушку». Ее мы и видим как «падающую звезду», тогда как само метеорное тело из-за малости непосредственному наблюдению недоступно.
Поединок твердой частички космического вещества и земной атмосферы всегда имеет один исход. Примерно на высоте 80 — 100
Радиоастрономия значительно расширила возможность изучения этих интересных явлений.
Когда метеорное тело стремительно прорезает земную атмосферу, то, сталкиваясь с молекулами и атомами воздуха, оно частично ионизует их, то есть «вышибает» из них некоторые электроны. В результате за метеорным телом образуется длинный цилиндрический слой из ионизованных газов. Его размеры весьма внушительны — при поперечнике в несколько метров длина этой ионизованной «трубы» достигает десятков километров. Вследствие диффузии (рассеивания газов) «труба» постепенно расширяется и в конце концов, разрушаемая ветрами и другими причинами, как бы растворяется в атмосфере.
Мы уже отмечали, что слой ионизованных газов для радиоволн определенных длин является своеобразным зеркалом. Значит, с помощью радиолокатора можно получить радиоэхо и от ионизованных метеорных следов. Возможности радиотехники в этой области исключительно велики. Радиолокаторы могут быстро определить расстояние до метеора, скорость метеорного тела, его торможение в атмосфере и, наконец, положение радианта, то есть той точки неба, откуда, как нам кажется, вылетел метеор.
Опыты показали, что наилучшие результаты получаются, если радиолокация метеоров ведется на волнах длиной около 5
Современные радиолокаторы так чувствительны, что им доступны метеоры 16-й звездной величины, то есть почти в 10 тысяч раз менее яркие, чем самые слабые из звезд, доступных невооруженному глазу.