Читаем Астрономы наблюдают полностью

При каждом измерении пользуются некоторым эталоном — меркой, употребляемой как единица длины. Для измерений на земной поверхности таким основным эталоном длины служит метр. Для астрономических расстояний ни метр, ни даже километр не являются вполне подходящей единицей масштаба — слишком уж велики расстояния между небесными телами. Поэтому астрономы употребляют вместо метра гораздо более крупную единицу длины. Называется она «астрономической единицей» (сокращенно «а. е.»). По определению астрономическая единица равна среднему расстоянию от Земли до Солнца. Чтобы связать астрономические измерения длины с чисто земными мерками расстояний, астрономическую единицу в конечном счете сопоставляют с метром, то есть, проще говоря, выражают астрономическую единицу в метрах или километрах.

Во времена Иоганна Кеплера (XVII век) величину астрономической единицы еще не знали — она впервые была найдена только век спустя. Не были известны и расстояния от Солнца до других планет Солнечной системы. Тем не менее третий закон Кеплера гласит, что «квадраты времен обращения планет вокруг Солнца относятся между собой как кубы их средних расстояний до Солнца». Каким же образом, не зная расстояний планет до Солнца, Кеплер мог открыть этот важный закон?

Весь секрет, оказывается, в том, что, не зная абсолютных (выраженных в километрах) расстояний планет до Солнца, можно сравнительно просто из наблюдений вычислить их относительные расстояния, то есть узнать, во сколько раз одна планета дальше от Солнца, чем другая.

Зная же относительные расстояния планет от Солнца, можно сделать чертеж Солнечной системы. В нем не будет хватать только одного — масштаба. Если бы можно было указать, чему равно расстояние в километрах между любыми двумя телами на чертеже, то, очевидно, этим самым был бы введен масштаб чертежа, и в единицах данного масштаба сразу можно было бы получить расстояние всех планет до Солнца.

До применения радиолокации среднее расстояние от Земли до Солнца, то есть астрономическая единица, считалось равным 149 504 000 км. Эта величина измерена не абсолютно точно, а приближенно с ошибкой в 17 000 км в ту или другую сторону.

Кое-кого из читателей может ужаснуть эта ошибка. Может быть, даже они усомнятся, стоит ли называть астрономию точной наукой. Такие упреки, конечно, несправедливы. Точность измерения характеризуется не абсолютной величиной ошибки (или, как говорят, абсолютной ошибкой), а ее отношением к измеряемому расстоянию. С этой точки зрения расстояние от Земли до Солнца измерено очень точно — относительная ошибка не превышает сотых долей процента. Но постоянное стремление к повышению точности характерно для любой точной науки. Поэтому можно понять астрономов, когда они снова и снова уточняют масштаб Солнечной системы и стремятся применить самые совершенные методы для измерения астрономической единицы. Вот тут-то и приходит на помощь радиоастрономия.

Совершенно очевидно, что радиолокация планет из-за их удаленности несравненно труднее радиолокации Луны. Не забудьте, что мощность радиоэха падает обратно пропорционально четвертой степени расстояния, то есть очень сильно. Но современная радиотехника преодолела и эти трудности.

В феврале 1958 года американскими учеными впервые проведена радиолокация ближайшей из планет — Венеры, а в сентябре того же года поймано радиоэхо от Солнца.

Во время радиолокации Венера находилась в 43 миллионах километров от Земли. Значит, радиоволне требовалось примерно 5 минут для путешествия «туда и обратно». Сигналы подавались в течение 4 минут 30 секунд, а следующие 5 минут «подслушивалось» радиоэхо. Длительная посылка радиосигналов была вызвана необходимостью — при коротком импульсе единичное отражение от Венеры не могло наблюдаться.

Даже с такими ухищрениями разобраться в принятых радиосигналах было нелегко. Крайне слабые, отраженные от Венеры радиоволны маскировались собственными шумами приемной аппаратуры. Только электронные вычислительные машины после почти годовой обработки наблюдений наконец доказали, что радиолокатор все-таки принял очень слабое радиоэхо от Венеры. После первого успеха радиолокация Венеры была повторена еще несколько раз.

Радиоэхо от Венеры получилось в 10 миллионов раз более слабым, чем радиоэхо от Луны. Но радиолокаторы его все-таки поймали — таков прогресс радиотехники за какие-нибудь двенадцать лет.

Гораздо более уверенно и с лучшими результатами провели радиолокацию Венеры в апреле 1961 года советские ученые. По их данным удалось уточнить величину астрономической единицы. Оказалось, что Солнце на 95 300 км дальше от Земли, чем думали до тех пор, и астрономическая единица равна 149 599 300 км. Ошибка в этом измерении не превышает 2000 км в ту или другую сторону, что по отношению к измеренному расстоянию составляет всего лишь тысячные доли процента!

Теперь величину астрономической единицы знают еще точнее, что позволяет с меньшими ошибками вычислять траектории космических ракет, а это имеет большое значение для межпланетных путешествий.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука