Поведение параллельных линий на плоской или сферической поверхности можно понять интуитивно, потому что нам легко представить себе плоскую поверхность, которая продолжается до бесконечности, и потому что все мы знаем, что такое сфера. Гораздо более сложная задача — понять поведение параллельных линий на гиперболической поверхности, потому что совершенно не ясно, как будет выглядеть такая поверхность, когда она продолжается до бесконечности. Параллельные линии в гиперболическом пространстве расходятся все дальше и дальше друг от друга. При этом, отклоняясь одна от другой, они не изгибаются, потому что, раз мы говорим о параллельных линиях, они должны быть прямыми, и тем не менее они расходятся из-за того, что гиперболическая поверхность постоянно искривляется, уходя сама от себя, а по мере того, как поверхность расширяется, между любыми двумя параллельными линиями появляется все больше и больше места. Да уж, такая картина кого угодно сведет с ума, и неудивительно, что, несмотря на всю свою гениальность, Риман не сумел придумать никакой поверхности, которая имела бы заданные свойства.
В последние десятилетия XIX века проблема представления гиперболической плоскости возбуждала многих математиков. Одна из таких попыток, предпринятая Анри Пуанкаре, захватила воображение голландского художника-графика М. К. Эшера (1898–1972). Его знаменитая серия гравюр «Предел круга» возникла как результат знакомства с предложенной французским математиком «дисковой моделью» гиперболической поверхности. На гравюре «Предел круга IV» двумерная вселенная помещена на круг (диск), где ангелы и демоны уменьшаются по мере приближения к краю. Сами ангелы и демоны, однако, и не подозревают о том, что уменьшаются, потому что по мере того, как они сами становятся меньше, то же самое происходит и с их измерительными приборами. С точки зрения обитателей диска все они сохраняют свои размеры, а их вселенная продолжается до бесконечности.
Изобретательность, воплощенная в дисковой модели Пуанкаре, состоит в том, что она восхитительным образом иллюстрирует, как параллельные линии ведут себя в гиперболическом пространстве. Прежде всего, нам надо определиться с тем, что такое прямая линия на диске. Аналогично тому, как прямые на сфере линии выглядят искривленными, когда их изображают на плоской карте (например, маршруты самолетов являются прямыми, но на карте выглядят искривленными), линии, являющиеся прямыми в диско-мире, также кажутся нам искривленными. Пуанкаре определил прямую линию на диске как сечение диска окружностью, которая входит в него под прямым углом.
На левой картинке внизу изображена прямая линия между точками А и В, для нахождения положения которой надо построить окружность, проходящую через точки А и В и входящую в диск под прямым углом. Гиперболический вариант постулата о параллельных утверждает, что для каждой прямой
Диско-мир Пуанкаре позволяет понять многое, но не все. При том что он снабжает нас концептуальной моделью гиперболического пространства, искаженного за счет взгляда через довольно странную линзу, он не показывает, как же гиперболическая поверхность будет выглядеть в нашем мире. Поиску более реалистичных гиперболических моделей — предприятию, которое подавало большие надежды в последние десятилетия XIX столетия, — нанес в 1901 году удар выдающийся немецкий математик Давид Гильберт (1862–1943): он доказал, что невозможно описать гиперболическую поверхность, используя какую-либо формулу. Математическое сообщество приняло доказательство Гильберта без энтузиазма, поскольку математики решили, что если нет никакого способа описать поверхность с помощью формулы, то, значит, такая поверхность и не существует. Интерес к производству моделей гиперболических поверхностей стал угасать.