Читаем Алекс в стране чисел. Необычайное путешествие в волшебный мир математики полностью

Для заданной прямой и точки вне ее существует самое большее одна прямая, проходящая через эту точку и параллельная данной прямой.

Можно показать, что постулат о параллельных имеет отношение к геометрии двух различных типов поверхности, где все зависит от фразы «самое большее одна прямая», которая на языке математики означает «или одна прямая, или ни одной». В первом случае, проиллюстрированном на рисунке, для любой прямой L и точки P существует только одна проходящая через P прямая, параллельная L (она обозначена как L'). Этот вариант постулата о параллельных применим к поверхности наиболее очевидного типа — плоской поверхности, такой как лист бумаги, лежащий у вас на столе.

Постулат о параллельных

Теперь рассмотрим второй вариант постулата, в котором для любой прямой L и точки P вне ее нет ни одной прямой, проходящей через P и параллельной L. С ходу нелегко сообразить, что это может быть за поверхность. В какую ужасную даль от Земли нам придется отправляться на ее поиски?

Да никуда не придется. Мы так и останемся на Земле! Представим себе, например, что наша линия L — это экватор, и вообразим, что точка P — это Северный полюс. Единственные прямые линии, идущие через Северный полюс, — это линии долготы, такие как Гринвичский меридиан, и при этом все линии долготы пересекают экватор. Таким образом, прямой линии, которая проходила бы через Северный полюс и была бы при этом параллельна экватору, просто нет.

Постулат о параллельных говорит о том, что кроме геометрии поверхностей существует еще и геометрия поверхностей сферических. «Начала» имели дело с плоскими поверхностями, и в течение 2000 лет именно они оставались в фокусе математических изысканий. Сферические же поверхности, например поверхность Земли, представляли тогда больший интерес для штурманов и астрономов, чем для теоретиков. Лишь к началу XIX века математики создали теорию, которая охватывала как плоские, так и сферические поверхности, а произошло это только после того, как ученые познакомились с поверхностями третьего типа — гиперболическими.

* * *

Среди вознамерившихся вывести постулат о параллельных из первых четырех постулатов и тем самым доказать, что это вовсе не постулат, а теорема, решительнее всех был настроен, пожалуй, Янош Бойяи (1802–1860) — студент из Трансильвании, обучавшийся инженерному делу. Его отец Фаркаш — тоже математик! — исходя из собственного неудачного опыта хорошо представлял себе, какие испытания уготованы сыну на сем пути. «Бога ради, заклинаю тебя, брось это дело, — убеждал он сына. — Оно опаснее, чем чувственные удовольствия, поскольку способно точно так же поглотить все твое время и лишить тебя здоровья, душевного спокойствия и счастья в жизни». Но Янош упрямо игнорировал отцовские увещевания; более того, в своем бунтарстве он был даже готов рассматривать возможность ложности этого евклидовского постулата! Не надо забывать, что для математиков «Начала» были чем-то вроде Библии для христиан — книгой, содержащей непререкаемую, священную истину. И хотя вопрос о том, является ли пятый постулат аксиомой или теоремой, обсуждался, и довольно активно, никто до Бояйи-младшего не осмеливался предположить, что это утверждение Евклида не совсем верно. Прошло время, и оказалось, что постановка этого вопроса открыла окно в новый мир.

Постулат о параллельных утверждает, что для любой заданной прямой и точки вне ее существует самое большее одна параллельная прямая, проходящая через указанную точку. Яношу хватило смелости предложить, что для любой заданной прямой и точки вне ее имеется более одной параллельной прямой, проходящей через эту точку. Хотя было не слишком ясно, как представить себе поверхность, для которой это утверждение верно, Янош понял, что геометрия, следующая из этого утверждения, взятого вместе с первыми четырьмя постулатами, по-прежнему остается математически последовательной. Это было революционным открытием, и Янош сумел осознать его судьбоносное значение. В 1823 году Янош написал отцу письмо, в котором заявлял: «Из ничего я создал новую вселенную».

На руку Яношу, вероятно, было то обстоятельство, что он работал один, и вне стен какого-либо математического заведения, и потому был в меньшей степени зажат в рамки традиционных воззрений. Более того, даже уже совершив свое великое открытие, он не думал, что станет математиком. После окончания университета Бояйи вступил в Австро-Венгерскую армию, где, по имеющимся отзывам, проявил себя среди сослуживцев как один из лучших фехтовальщиков и танцоров. Кроме этого, он был замечательным музыкантом и однажды, вызвав на дуэль сразу 13 офицеров, поставил условие, что в случае победы сыграет проигравшему пьесу на скрипке.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука