В начале XVIII столетия математик Абрахам де Муавр (1667–1754) — француз и гугенот, нашедший убежище в Лондоне, — первым понял, что коэффициенты в этих равенствах все лучше ложатся на кривую-колокол по мере, того как (
Я говорил о колоколообразной кривой так, как если бы это была одна кривая; на самом же деле это семейство кривых. Все они выглядят похожими на колокол, но одни уже, а другие шире.
Вот объяснение, почему ширина бывает различной. Если бы Галилей, скажем, в своих астрономических измерениях пользовался телескопом XXI века, то ошибка была бы меньше, чем при использовании телескопа XVI столетия. Современный инструмент дал бы гораздо более узкую колоколообразную кривую, чем первый телескоп. Ошибки были бы намного меньше, но все равно были бы распределены нормально.
Помимо среднего значения, колоколообразная кривая характеризуется еще шириной, называемой
Работа Робинсона, грубо говоря, состоит в том, чтобы, исследуя структуру колоссальных объемов данных, сказать, не намухлевал ли кто в бухгалтерской отчетности. Робинсон придерживается той же стратегии, что использовал Пуанкаре, ежедневно взвешивая хлеб, с той лишь разницей, что он — британский экономист — ежедневно анализирует гигабайты финансовых данных и применяет для этого гораздо более продвинутые средства.
Робинсон говорит, что сотрудники его отдела имеют склонность работать, исходя из предположения, что любому набору данных априорно свойственно нормальное распределение. «Я полагаю, что в отношении финансовых рынков истина состоит в том, что мы зачастую предполагаем наличие нормального распределения там, где оно, возможно, не работает». В последние годы и правда наблюдалось некоторое попятное движение — как в мире науки, так и в мире финансов — прочь от исторически сложившейся практики опираться на нормальное распределение.
Когда некоторое распределение сконцентрировано вблизи среднего в меньшей степени, чем колоколообразная кривая, про него говорят, что оно плосковершинное или что у него эксцесс меньше нормального. Наоборот, когда распределение в большей степени сконцентрировано вблизи среднего, говорят, что оно островершинное, или что оно имеет положительный эксцесс. Уильям Сили Госсет, специалист по статистике, работавший на пивоварне Гиннесса в Дублине[67], придумал в 1908 году памятку, облегчающую запоминание того, что есть что: «У утконоса с плоским утиным носом (и плоской спиной) плосковершинное распределение, а у целующихся кенгуру — островершинное». Он выбрал кенгуру из-за того, что они «высоко скачут, хотя, честно говоря, по той же самой причине можно было выбрать и зайцев!». Поскольку в составленной Госсетом памятке главные действующие лица — животные, далекие правые и далекие левые участки кривых, описывающих распределения, называют