Другими словами, четвертая часть равна единице минус одна треть плюс одна пятая минус одна седьмая плюс одна девятая и т. д.: надо попеременно прибавлять и вычитать дроби с единичным числителем и со знаменателем, последовательно равным нечетным числам, устремляющимся в бесконечность. До этого ученые видели в десятичном разложении числа лишь случайный набор цифр. И вдруг появилось одно из наиболее изящных, ничем не усложненных уравнений во всей математике. Оказалось, что образцовый представитель беспорядка несет некий порядок в своей ДНК.
Лейбниц пришел к этой формуле, используя «анализ» — мощный раздел математики, в котором для вычисления площадей, кривых и наклонов стали применяться новые представления о бесконечно малых величинах. Формула Лейбница представляет собой так называемый бесконечный ряд — сумму, которая продолжается и продолжается без конца. И эта формула дает способ вычислить число . Для начала нам надо умножить обе ее части на 4:
Начав с первого члена и прибавляя один за другим остальные, получаем следующую последовательность (записанную в виде десятичных дробей):
4 -> 2,667 -> 3,467-> 2,895 -> 3,340 -> …
Сумма подходит к числу
все ближе и ближе, а результат скачет все меньше и меньше. Тем не менее этот метод требует более 300 членов, чтобы ответ имел точность в два десятичных знака, так что он практически непригоден для тех, кто желает найти большее число цифр в десятичном разложении числа
В конце концов с помощью анализа удалось получить другие бесконечные ряды для
В 1844 году, с головой погрузившись в работу на два месяца, немецкий молниеносный эстрадный вычислитель Захария Дазе отодвинул рекорд вычисления числа до отметки 200 десятичных знаков. Дазе использовал ряд, который хотя на вид и сложнее, чем приведенная выше формула для , но на самом деле гораздо удобнее в употреблении. Во-первых, потому что он сходится к с неплохой скоростью. Точность в два десятичных знака достигается уже после первых девяти членов. Во-вторых, с дробями 1/ 2, 1/ 5и 1/ 8, которые все время появляются в каждом третьем члене, удобно иметь дело. Если записать 1/ 5как 1/ 10, a 1/ 8— как 1/ 2x 1/ 2x 1/ 2, то все необходимые действия с этими членами можно свести к комбинациям удвоения и взятия половины. Дазе выписал справочную таблицу, к которой обращался в ходе вычислений, начиная с 2, 4, 8, 16, 32 и далее по мере надобности. Поскольку он выполнял вычисления числа с точностью до 200 знаков, полученное в самом конце удвоение будет иметь 200 цифр в длину. Это происходит после 667 последовательных удвоений.
Дазе использовал такое разложение:
Отсюда
Учет одного члена дает 3,3,
учет двух членов — 3,1200
и учет трех — 3,1452.