Выход в 1966 году нашел молодой теоретик из Института ядерных исследований Вадим Кузьмин. Он указал на то, что реакция поглощения нейтрино изотопом галлия 71Ga с образованием радиоактивного германия идет с порогом всего лишь 0,233 МэВ, а следовательно, пригодна для регистрации и водородных, и всех иных нейтрино солнечного спектра. Только в 1991 году начал действовать российско-американский Ga-Ge детектор в Баксанской (Северный Кавказ) нейтринной лаборатории (эксперимент SAGE). Мишень для солнечных нейтрино из 57 тонн металлического галлия расположена в туннеле под горой. Чуть позже заработал аналогичный детектор в подземной лаборатории Гран-Сассо, содержащий 30 тонн галлия в виде раствора GaCl3 (эксперимент GALLEX). И в этих экспериментах предстояло извлекать накопившиеся в три месяца 30 атомов германия. Но чему удивляться после Дэвиса?..
Оба эксперимента дали согласующиеся результаты: число зарегистрированных солнечных нейтрино в 2 раза меньше ожидаемого. Опять меньше, опять пропажа и опять сомнения в процедурах извлечения. В физике сомнения разрешаются только экспериментально, иногда дорогой ценой. В данном случае цена была немалая. Обе группы создали земные источники нейтрино из накопленного радиоактивного изотопа хрома. Интенсивность каждого источника была подобна интенсивности солнечных нейтрино на поверхности Земли, но с точно рассчитанным ее значением.
Контрольные извлечения атомов германия, образованного «искусственным Солнцем», в обоих экспериментах подтвердили отсутствие ошибок в процедурах извлечения.
Последнюю точку в «проблеме солнечных нейтрино» — так она называлась с первых работ Дэвиса — поставил японский эксперимент «Камиокандэ» (см. «Наука и жизнь» № 12, 1998 г.). Физики этой группы пошли по иному пути. В огромном детекторе они регистрировали результат упругого рассеяния нейтрино на атомарных электронах. Тело детектора, расположенного в шахте Камиока, — 1000 тонн сверхчистой воды; сигнал — свет от черенковского излучения электронов отдачи дает информацию об энергии электронов и направлении движения. Последнее особенно важно, ибо позволяет судить о направлении движения налетающего нейтрино и отобрать только те события, в которых нейтрино летели в направлении Солнце — Земля. Еще одна особенность эксперимента «Камиокандэ» — он регистрирует только нейтрино борные. Последний результат: отношение экспериментального числа к ожидаемому — 0,42.
Все четыре солнечных эксперимента указывают на «исчезновение» нейтрино. Почему же физики не утверждают, что осцилляции открыты? Да потому, что не удается одним набором параметров описать полную совокупность данных всех четырех «солнечных» экспериментов. Вполне может быть, что Солнце ведет себя не так, как ему предписывает Стандартная солнечная модель. Проблема солнечных нейтрино еще ждет своего разрешения.
НЕЙТРИНО И СОЛНЦЕ
Без нейтрино не было бы жизни, потому что термоядерное горение водорода (Солнце — гигантский водородный шар) невозможно без участия нейтрино. Солнечные нейтрино в основном образуются в трех реакциях:
р + р —> d + е+ + ve,
7Ве + е- — > 7Li + ve,
8B —> 8Be + e+e+ ve,
Каждую секунду Солнце испускает 1,8х1038 электронных (и только электронных!) нейтрино. Все они практически без поглощения выходят на поверхность Солнца, и часть из них достается Земле. Теоретики, создавшие Стандартную солнечную модель, утверждают, что они с большой точностью знают число нейтрино, испускаемых в каждой реакции и ежесекундно падающих на каждый квадратный сантиметр Земли:
водородные нейтрино — 6,01x1010;
бериллиевые — 0,47х1010;
борные — 5,81х106.
(Данные разных «солнечных» теоретиков несколько расходятся, и здесь приведены расчеты