Другое соображение относится к оценке позиций, возникающих при анализе вариантов. Оценка ведется по статическим характеристикам — численности и расположению шашек, и лишь потом учитывается очередь хода — а часто и вовсе не учитывается. Чем чаще встречаются позиции, в которых результат зависит от того, чей ход, тем труднее анализ, предваряющий выбор хода. В той же позиции диаграммы 2, но уже при ходе черных, игра в крепки по-прежнему ничейна, а игра в поддавки заканчивается уже не победой белых, а ничьей: 1…gf4 2.dc3 ef6 3.dc5 fe5 4.cd6 e:c7 5.cd4 fg3 6.de5 cd6 7.e:c7 gf2 8.cb8 fg1 9.bh2 ga7 =.
Конечно, один пример ничего не доказывает. Указанные количественные оценки трудности выбора хода должны быть применены не к отдельно взятой позиции, но только ко многим сразу. Это и было проделано для случайных выборок позиций с малым числом шашек. Всего было проанализировано более тысячи позиций. Оценка по разным выборкам показала, что по первому, а еще больше по второму «критерию трудности» поддавки устойчиво и сильно превосходят крепкие шашки.
Материальный фактор в обратной игре значит сравнительно мало, что также затрудняет перебор вариантов, предшествующий выбору хода. В простых шашках расчет вариантов, связанных с нарушением материального равновесия, делается, как правило, неглубокий, так как они заслуживают внимания лишь при возможности форсированно вернуть материал или при наличии бросающейся в глаза позиционной компенсации. В обратных шашках такие варианты требуют проверки не менее тщательной, чем другие.
В крепках ошибка в выигрышной позиции обычно ведет к ничьей. В поддавках же дело, как правило, заканчивается поражением. Можно сказать, что ничейной полосы между зонами выигрыша и проигрыша здесь почти нигде нет. Поэтому нельзя избежать риска, уклоняясь от сложных и острых позиций, — в простых и спокойных риска не меньше.
Ну, а чем закончится игра, если обе стороны не сделают ни одной ошибки? Когда это известно, привлекательность игры пусть немного (для кого как, однако), но снижается. В простых шашках правильный исход — ничья; этот вывод есть убеждение, основанное на громадном практическом опыте. Отсутствие строгого доказательства ничейности ни в малейшей степени не ставит ее (ничейность) под сомнение. Можно сказать, что ничейность правильного исхода игры в русские крепкие шашки — истина твердо познанная, хотя и не доказанная. Правильный исход известен вообще для подавляющего большинства игр.
Поддавки — весьма редкий случай: решение проблемы исхода не только еще не найдено, но даже не угадывается. Приверженцев у «белой» и «черной» гипотез примерно поровну, есть сторонники и у ничейной.
Сделав ряд правдоподобных предположений, можно принять, что в поддавки за все время их существования сыграно порядка миллиарда партий. Это можно без особой натяжки истолковать и так, что тысячи человеко-лет были истрачены на решение проблемы правильного исхода игры в поддавки. Несмотря на усилия, по затратам времени сравнимые с доказыванием Великой теоремы Ферма, результата нет. Надежда на решение этой, по существу, научной проблемы в русских поддавках связана с бурным развитием дебютной теории. Варианты протягиваются все дальше и все чаще доходят до конца. Сейчас трудно сказать, сколько времени продлится этот процесс; видимо — десятки лет (доска 6x6, на которой выигрывает начинающий, потребовала десятков часов). Конечно, и знание результата не убьет спортивного интереса к игре, что мы видим на примере простых шашек. А уже начавшееся освоение стоклеточной доски (по правилам международных шашек) вообще снимает эту проблему в сколь-нибудь обозримом будущем.
Заметим, что игровым позициям поддавков присуща большая, чем в крепках, разомкнутость лагерей белых и черных; но не следует думать, что поддавки от этого беднее позициями: материально неравновесных игровых ситуаций в поддавках много более, чем необходимо для компенсации.
Шашки — игра более абстрактная, чем шахматы: однонаправленность движения, однородность материала, обязательность взятия не имеют жизненных аналогов. Поддавки, в свою очередь, абстрактнее простых шашек — в них отсутствует также важный естественный ориентир сравнительной численности. Наверное, потому среди любителей поддавков так много математиков, служителей самой абстрактной из наук (одновременно почему-то и самой практичной). Среди сильнейших игроков в поддавки математики явно преобладают.
Статья — не учебник, поэтому мы ограничимся лишь самыми простыми соображениями.
Главные из них — следствия из принципа подвижности: надо стремиться увеличивать свою подвижность и ограничивать подвижность противника. Под подвижностью мы понимаем число всех возможных в данной позиции ходов, за исключением форсированно проигрывающих.