Читаем 120 практических задач полностью

data = pd.DataFrame({'date': pd.date_range('2022-01-01', periods=365),

'temperature': np.random.randn(365) * 10 + 20})

# Масштабирование данных

scaler = MinMaxScaler(feature_range=(0, 1))

scaled_data = scaler.fit_transform(data['temperature'].values.reshape(-1, 1))

# Формирование датасета для LSTM

def create_dataset(data, look_back=1):

X, Y = [], []

for i in range(len(data) – look_back – 1):

X.append(data[i:(i + look_back), 0])

Y.append(data[i + look_back, 0])

return np.array(X), np.array(Y)

# Разделение данных на обучающую и тестовую выборки

train_size = int(len(scaled_data) * 0.8)

test_size = len(scaled_data) – train_size

train, test = scaled_data[0:train_size], scaled_data[train_size:len(scaled_data)]

# Создание dataset с look_back временными шагами

look_back = 10 # количество предыдущих временных шагов для использования в качестве признаков

X_train, Y_train = create_dataset(train, look_back)

X_test, Y_test = create_dataset(test, look_back)

# Изменение формы данных для LSTM [samples, time steps, features]

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))

# Построение LSTM модели

model = Sequential

model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))

model.add(Dropout(0.2))

model.add(LSTM(units=50))

model.add(Dropout(0.2))

model.add(Dense(units=1))

# Компиляция модели

model.compile(optimizer='adam', loss='mean_squared_error')

# Обучение модели

model.fit(X_train, Y_train, epochs=50, batch_size=32)

# Прогнозирование на тестовых данных

predicted_temperature = model.predict(X_test)

# Обратное масштабирование предсказанных значений

predicted_temperature = scaler.inverse_transform(predicted_temperature)

# Визуализация результатов

plt.figure(figsize=(10, 6))

plt.plot(data['date'][train_size + look_back + 1:], test, label='Истинные значения')

plt.plot(data['date'][train_size + look_back + 1:], predicted_temperature, label='Прогноз')

plt.title('Прогноз температуры с использованием LSTM')

plt.xlabel('Дата')

plt.ylabel('Температура')

plt.legend

plt.show

```

Пояснение архитектуры и процесса:

1. Подготовка данных: В примере мы создаем вымышленные данные о температуре. Данные масштабируются с использованием `MinMaxScaler` для нормализации в диапазоне [0, 1]. Затем данные разделяются на обучающую и тестовую выборки.

2. Формирование датасета для LSTM: Функция `create_dataset` создает датасет, разделенный на признаки (`X`) и целевую переменную (`Y`) с заданным количеством временных шагов (`look_back`).

3. Построение LSTM модели: Модель состоит из двух слоев LSTM с уровнем отсева `Dropout` для предотвращения переобучения. Выходной слой является полносвязным слоем `Dense`, который предсказывает следующее значение температуры.

4. Компиляция и обучение модели: Модель компилируется с оптимизатором Adam и функцией потерь `mean_squared_error` для минимизации ошибки прогнозирования.

5. Прогнозирование и визуализация: Модель обучается на данных обучения, затем прогнозирует температуру на тестовом наборе данных. Предсказанные значения обратно масштабируются и визуализируются с истинными значениями.

Преимущества использования LSTM для прогнозирования погоды

– Учет временных зависимостей: LSTM способны учитывать долгосрочные зависимости в данных о погоде.

– Обработка последовательных данных: Нейронные сети LSTM могут обрабатывать временные ряды без явного определения признаков.

– Прогнозирование на основе исторических данных: LSTM могут использоваться для прогнозирования будущих значений на основе прошлых наблюдений.

Этот подход может быть адаптирован для реальных данных о погоде, что позволяет улучшить точность прогнозирования и обеспечить более эффективное управление ресурсами в зависимости от прогнозируемых метеорологических условий.

<p><strong>16. Построение нейронной сети для машинного перевода</strong></p>

– Задача: Перевод текста с одного языка на другой.

Построение нейронной сети для машинного перевода – это сложная задача, требующая специализированных архитектур нейронных сетей, способных обрабатывать текст на одном языке и производить его перевод на другой. В данном случае часто используются рекуррентные нейронные сети (RNN) или их модификации, такие как LSTM (Long Short-Term Memory), которые могут эффективно работать с последовательными данными.

Построение нейронной сети для машинного перевода

1. Подготовка данных

Прежде всего необходимо подготовить данные для обучения и тестирования модели машинного перевода:

– Загрузить пары предложений на двух языках (например, английский и французский).

– Преобразовать текст в числовые последовательности (токенизация).

– Выполнить паддинг (дополнение) последовательностей до одинаковой длины для удобства обработки нейронной сетью.

2. Построение модели нейронной сети

Рассмотрим типичную архитектуру нейронной сети для машинного перевода, использующую сеть с кодировщиком и декодером:

Перейти на страницу:

Похожие книги

1917–1920. Огненные годы Русского Севера
1917–1920. Огненные годы Русского Севера

Книга «1917–1920. Огненные годы Русского Севера» посвящена истории революции и Гражданской войны на Русском Севере, исследованной советскими и большинством современных российских историков несколько односторонне. Автор излагает хронику событий, военных действий, изучает роль английских, американских и французских войск, поведение разных слоев населения: рабочих, крестьян, буржуазии и интеллигенции в период Гражданской войны на Севере; а также весь комплекс российско-финляндских противоречий, имевших большое значение в Гражданской войне на Севере России. В книге используются многочисленные архивные источники, в том числе никогда ранее не изученные материалы архива Министерства иностранных дел Франции. Автор предлагает ответы на вопрос, почему демократические правительства Северной области не смогли осуществить третий путь в Гражданской войне.Эта работа является продолжением книги «Третий путь в Гражданской войне. Демократическая революция 1918 года на Волге» (Санкт-Петербург, 2015).В формате PDF A4 сохранён издательский дизайн.

Леонид Григорьевич Прайсман

История / Учебная и научная литература / Образование и наука
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода

Правда о самом противоречивом князе Древней Руси.Книга рассказывает о Георгии Всеволодовиче, великом князе Владимирском, правнуке Владимира Мономаха, значительной и весьма противоречивой фигуре отечественной истории. Его политика и геополитика, основание Нижнего Новгорода, княжеские междоусобицы, битва на Липице, столкновение с монгольской агрессией – вся деятельность и судьба князя подвергаются пристрастному анализу. Полемику о Георгии Всеволодовиче можно обнаружить уже в летописях. Для церкви Георгий – святой князь и герой, который «пал за веру и отечество». Однако существует устойчивая критическая традиция, жестко обличающая его деяния. Автор, известный историк и политик Вячеслав Никонов, «без гнева и пристрастия» исследует фигуру Георгия Всеволодовича как крупного самобытного политика в контексте того, чем была Древняя Русь к началу XIII века, какое место занимало в ней Владимиро-Суздальское княжество, и какую роль играл его лидер в общерусских делах.Это увлекательный рассказ об одном из самых неоднозначных правителей Руси. Редко какой персонаж российской истории, за исключением разве что Ивана Грозного, Петра I или Владимира Ленина, удостаивался столь противоречивых оценок.Кем был великий князь Георгий Всеволодович, погибший в 1238 году?– Неудачником, которого обвиняли в поражении русских от монголов?– Святым мучеником за православную веру и за легендарный Китеж-град?– Князем-провидцем, основавшим Нижний Новгород, восточный щит России, город, спасший независимость страны в Смуте 1612 года?На эти и другие вопросы отвечает в своей книге Вячеслав Никонов, известный российский историк и политик. Вячеслав Алексеевич Никонов – первый заместитель председателя комитета Государственной Думы по международным делам, декан факультета государственного управления МГУ, председатель правления фонда "Русский мир", доктор исторических наук.В формате PDF A4 сохранен издательский макет.

Вячеслав Алексеевич Никонов

История / Учебная и научная литература / Образование и наука