Читаем 120 практических задач полностью

– Энкодер: Преобразует входные данные в скрытое представление меньшей размерности.

– Декодер: Восстанавливает данные из скрытого представления обратно в оригинальные данные.

Пример архитектуры нейронной сети для автоэнкодера:

```python

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Dense

# Пример архитектуры автоэнкодера для обнаружения аномалий в финансовых транзакциях

# Подготовка данных (вымышленный пример)

# X_train – обучающие данные, X_test – тестовые данные

# Данные предварительно должны быть нормализованы

input_dim = X_train.shape[1] # размер входных данных

# Энкодер

input_layer = Input(shape=(input_dim,))

encoded = Dense(32, activation='relu')(input_layer)

encoded = Dense(16, activation='relu')(encoded)

# Декодер

decoded = Dense(32, activation='relu')(encoded)

decoded = Dense(input_dim, activation='sigmoid')(decoded)

# Модель автоэнкодера

autoencoder = Model(input_layer, decoded)

# Компиляция модели

autoencoder.compile(optimizer='adam', loss='mse')

# Обучение модели на обычных (нормальных) образцах

autoencoder.fit(X_train, X_train,

epochs=50,

batch_size=128,

shuffle=True,

validation_data=(X_test, X_test))

# Использование автоэнкодера для предсказания на тестовых данных

predicted = autoencoder.predict(X_test)

# Рассчитываем ошибку реконструкции для каждого образца

mse = np.mean(np.power(X_test – predicted, 2), axis=1)

# Определение порога для обнаружения аномалий

threshold = np.percentile(mse, 95) # например, выбираем 95-й процентиль

# Обнаружение аномалий

anomalies = X_test[mse > threshold]

# Вывод аномалий или дальнейшее их анализ

print(f"Найдено {len(anomalies)} аномалий в данных.")

```

Пояснение архитектуры и процесса:

1. Архитектура автоэнкодера: Модель состоит из двух частей: энкодера и декодера. Энкодер уменьшает размерность данных, представляя их в скрытом пространстве меньшей размерности. Декодер восстанавливает данные обратно в оригинальную размерность.

2. Компиляция и обучение: Модель компилируется с использованием оптимизатора Adam и функции потерь MSE (Mean Squared Error), затем обучается на обычных (нормальных) образцах.

3. Определение порога для обнаружения аномалий: После обучения модели рассчитывается среднеквадратичная ошибка (MSE) между входными данными и их реконструкциями. Затем определяется порог, например, на основе перцентиля ошибок, для обнаружения аномальных образцов.

4. Обнаружение аномалий: Образцы, для которых ошибка восстановления выше заданного порога, считаются аномальными.

Преимущества использования автоэнкодеров для обнаружения аномалий

– Не требуется разметка данных: Автоэнкодеры могут обучаться без размеченных данных, что упрощает процесс обнаружения аномалий.

– Универсальность: Могут использоваться для различных типов данных, включая структурированные данные, изображения и текст.

– Высокая чувствительность к аномалиям: Автоэнкодеры могут выявлять сложные и неочевидные аномалии, которые могут быть пропущены другими методами.

Этот подход к обнаружению аномалий является эффективным инструментом для финансовых институтов и других отраслей, где важно быстро выявлять подозрительные или необычные события в данных.

<p><strong>15. Прогнозирование погоды с использованием LSTM сети</strong></p>

– Задача: Анализ временных рядов метеорологических данных.

Прогнозирование погоды с использованием LSTM (Long Short-Term Memory) сети – это задача анализа временных рядов, которая требует учета зависимостей в данных со временем, таких как температура, влажность, давление и другие метеорологические параметры. LSTM, как тип рекуррентной нейронной сети, хорошо подходит для работы с последовательными данных, сохраняя информацию на длительные временные интервалы.

Построение LSTM сети для прогнозирования погоды

1. Подготовка данных

Прежде всего необходимо подготовить данные:

– Загрузить и предобработать временные ряды метеорологических данных.

– Разделить данные на обучающую и тестовую выборки.

– Масштабировать данные для улучшения производительности обучения модели.

2. Построение модели LSTM

Рассмотрим архитектуру LSTM сети для прогнозирования погоды:

– LSTM слои: Используются для запоминания и учета долгосрочных зависимостей в данных о погоде.

Пример архитектуры нейронной сети для прогнозирования погоды:

```python

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Dropout

# Пример построения LSTM модели для прогнозирования погоды

# Подготовка данных (вымышленный пример)

# Загрузка и предобработка данных

# Пример данных (вымышленный)

# Здесь данные должны быть загружены из вашего источника данных

# Давайте представим, что у нас есть временной ряд температур

Перейти на страницу:

Похожие книги

1917–1920. Огненные годы Русского Севера
1917–1920. Огненные годы Русского Севера

Книга «1917–1920. Огненные годы Русского Севера» посвящена истории революции и Гражданской войны на Русском Севере, исследованной советскими и большинством современных российских историков несколько односторонне. Автор излагает хронику событий, военных действий, изучает роль английских, американских и французских войск, поведение разных слоев населения: рабочих, крестьян, буржуазии и интеллигенции в период Гражданской войны на Севере; а также весь комплекс российско-финляндских противоречий, имевших большое значение в Гражданской войне на Севере России. В книге используются многочисленные архивные источники, в том числе никогда ранее не изученные материалы архива Министерства иностранных дел Франции. Автор предлагает ответы на вопрос, почему демократические правительства Северной области не смогли осуществить третий путь в Гражданской войне.Эта работа является продолжением книги «Третий путь в Гражданской войне. Демократическая революция 1918 года на Волге» (Санкт-Петербург, 2015).В формате PDF A4 сохранён издательский дизайн.

Леонид Григорьевич Прайсман

История / Учебная и научная литература / Образование и наука
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода

Правда о самом противоречивом князе Древней Руси.Книга рассказывает о Георгии Всеволодовиче, великом князе Владимирском, правнуке Владимира Мономаха, значительной и весьма противоречивой фигуре отечественной истории. Его политика и геополитика, основание Нижнего Новгорода, княжеские междоусобицы, битва на Липице, столкновение с монгольской агрессией – вся деятельность и судьба князя подвергаются пристрастному анализу. Полемику о Георгии Всеволодовиче можно обнаружить уже в летописях. Для церкви Георгий – святой князь и герой, который «пал за веру и отечество». Однако существует устойчивая критическая традиция, жестко обличающая его деяния. Автор, известный историк и политик Вячеслав Никонов, «без гнева и пристрастия» исследует фигуру Георгия Всеволодовича как крупного самобытного политика в контексте того, чем была Древняя Русь к началу XIII века, какое место занимало в ней Владимиро-Суздальское княжество, и какую роль играл его лидер в общерусских делах.Это увлекательный рассказ об одном из самых неоднозначных правителей Руси. Редко какой персонаж российской истории, за исключением разве что Ивана Грозного, Петра I или Владимира Ленина, удостаивался столь противоречивых оценок.Кем был великий князь Георгий Всеволодович, погибший в 1238 году?– Неудачником, которого обвиняли в поражении русских от монголов?– Святым мучеником за православную веру и за легендарный Китеж-град?– Князем-провидцем, основавшим Нижний Новгород, восточный щит России, город, спасший независимость страны в Смуте 1612 года?На эти и другие вопросы отвечает в своей книге Вячеслав Никонов, известный российский историк и политик. Вячеслав Алексеевич Никонов – первый заместитель председателя комитета Государственной Думы по международным делам, декан факультета государственного управления МГУ, председатель правления фонда "Русский мир", доктор исторических наук.В формате PDF A4 сохранен издательский макет.

Вячеслав Алексеевич Никонов

История / Учебная и научная литература / Образование и наука