Читаем 12 тверских математиков полностью

в работах данного направления нет достаточно удобных общих правил, вследствие чего требуются дополнительные усилия, чтобы устанавливать, какие цифры результата каждого действия над приближенными значениями величин следует сохранять.

Детально изучив все три направления, Владимир Модестович Брадис пришёл к выводу, что ни первое, ни третье направление не могут быть основными для постоянно применяемых вычислений в школе. Второе направление — вычисление без строгого учета погрешностей — подкупает простотой практических правил, но не пользуется доверием в силу некоторой их неопределённости. В.М. Брадис решил попытаться дать теоретическое обоснование этим правилам. Обнадёживающим было то обстоятельство, что правила имели успешное применение на практике как самим А.К. Крыловым, так и другими математиками. В 1922 г. В.М. Брадис занялся поисками обоснования. Надо было выяснить, каковы предельные погрешности результатов отдельных действий над приближенными данными с определённым числом цифр, и каково распределение фактических погрешностей результатов. Намеченный путь исследования оказался правильным. Первые итоги исследования были опубликованы в 1923 г. в статье «Приближенные вычисления в школьном курсе математики», напечатанной в сборнике «Вопросы математики и её преподавание» под редакцией И.И. Чистякова и Н.М. Соловьёва (М., 1923). Здесь были рассмотрены смысл, методика и преимущества способа границ погрешностей и обоснован способ вычисления по правилам, которые В.М. Брадис назвал «правилами подсчёта цифр», а следовало бы их называть «правилами Брадиса». Было показано, что они вполне приемлемы для учащихся средних школ и полностью ликвидируют «нелепые хвосты ненужных цифр» при решении задач, взятых из жизни.

Более глубокое исследование вопроса о предельных погрешностях и распределении фактических погрешностей результатов действий сложения, умножения, возведения в квадрат и в куб и обратных им действий было дано Владимиром Модестовичем в двух теоретических работах: «Умножение приближенных чисел» в 1925 г. и «Опыт обоснования некоторых практических правил действия над приближенными числами» в 1927 г. Они вполне подтвердили целесообразность правил подсчёта цифр, сформулированных в 1923 г.

Две последние работы представляют собой результат основного исследования В.М. Брадиса, явившийся итогом большого труда. В последней статье на основе теоретико-вероятностных методов даётся обоснование правилам численных расчётов с приближенными данными при нестрогом учёте погрешностей, ранее интуитивно полученных различными вычислителями, в частности А.Н. Крыловым. На основе проделанной работы формулируется принцип записи результатов действий в предположении, что погрешность каждого приближенного компонента не превосходит полуединицы разряда последней его цифры, и что все значения этой погрешности равновероятны. Этот принцип состоит в следующем: приближенное число надо писать так, чтобы в нём все значащие цифры кроме последней были верны, и лишь последняя цифра была бы сомнительной, и притом «в среднем», не более как на одну единицу. Доказано, что чем больше погрешность, тем меньше вероятность её появления. Термин «в среднем» понимается в том смысле, что речь здесь идёт не о границах погрешности, а о средней квадратической погрешности, т.е. о корне квадратном из среднего значения квадрата погрешности. В формулировке принципа записи результата действий над приближенными данными, предложенной академиком A.Н. Крыловым, отсутствует термин «в среднем». В.М. Брадис доказал, что необходима указанная выше поправка. А.Н. Крылов приветствовал это исследование Владимира Модестовича.

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии
1917 год. Распад
1917 год. Распад

Фундаментальный труд российского историка О. Р. Айрапетова об участии Российской империи в Первой мировой войне является попыткой объединить анализ внешней, военной, внутренней и экономической политики Российской империи в 1914–1917 годов (до Февральской революции 1917 г.) с учетом предвоенного периода, особенности которого предопределили развитие и формы внешне– и внутриполитических конфликтов в погибшей в 1917 году стране.В четвертом, заключительном томе "1917. Распад" повествуется о взаимосвязи военных и революционных событий в России начала XX века, анализируются результаты свержения монархии и прихода к власти большевиков, повлиявшие на исход и последствия войны.

Олег Рудольфович Айрапетов

Военная документалистика и аналитика / История / Военная документалистика / Образование и наука / Документальное