Согласно Философскому энциклопедическому словарю, функция науки – «выработка и теоретическая систематизация объективных знаний о действительности». Но есть область интеллектуальной деятельности, которую называют наукой по недоразумению. Она имеет отношение не к реальной природе, а к идеальным категориям.
Королевское научное общество Великобритании, вдохновленное успехами Ньютона, избрало девиз: «Ничего словами». С тех пор степенью математизации знаний нередко стали определять их причастность к науке.
Математика универсальна. Её принципами и формулами пользуются представители разных наук. Крупный мыслитель и математик Анри Пуанкаре справедливо считал её искусством называть разные вещи одним и тем же именем.
Укоренилось мнение, будто наука становится настоящей только после процедуры «математизации». С помощью этой волшебной палочки происходит чудесное превращение разрозненных фактов – неряшливой замарашки – в строгую даму из высшего интеллектуального общества.
Казалось, Ньютон в «Математических началах натуральной философии» выразил на языке алгебры и геометрии главные тайны Мироздания. Он восхищался гармонией небесных сфер и полагал, что она не могла «произойти иначе, как по намерению и по власти могущественного и премудрого существа». Выходит, Бог придумал правила математики, по которым сотворил Мир!
После такого обожествления физико-математических наук в конце своего труда Ньютон сделал вывод: «От слепой необходимости природы, которая повсюду и всегда одна и та же, не может происходить изменения вещей. Всякое разнообразие вещей, сотворённых по месту и времени, может происходить лишь от мысли и воли Творца, необходимо существующего».
Что же получается? Стройное Мироздание, созданное по канонам «точных наук», остаётся изначально идеальным. А всё разнообразие вещей, а также их изменения свершаются согласно высшей силе и высшему Разуму.
Стало быть, математика имеет отношение только к предельно упрощённым небесным телам – в виде точек, – витающих в абстрактном пространстве и подчинённых закону всемирного тяготения. Реальные Земля, Солнце, планеты, кометы и звёзды живут по своим законам.
При всем уважении к гравитации надо иметь в виду, что для мелких природных тел она мала, а для микробов, молекул и вовсе ничтожна. Другое дело – электромагнитные силы или биохимические процессы. Хотя они со своей стороны не обладают дальнодействием гравитации.
Попытки времен Галилея и Ньютона перевести на язык математики философию природы понятны и отчасти оправданны. В ту пору геологические и биологические науки только создавались, летоисчисление вели со дня творения или от Всемирного потопа, а история Земли и жизни укладывалась в узкое ложе немногих тысячелетий.
Накинув на планету сетку координат, можно было надеяться, что построением карт и глобусов завершится решение главных географических задач. Выяснив геометрические закономерности строения кристаллов, учёные имели основания подозревать, что столь же успешно будут открыты и общие геологические законы.
Математические расчёты, основанные на абстракциях, часто бывают верными
В славную эпоху Просвещения парижский академик, астроном, физик и математик Пьер Симон Лаплас полагал, что в принципе можно выразить Мироздание системой формул. Клод Анри Сен-Симон даже полагал, что и область нравственности можно свести к формулам гравитации.
Но чем лучше узнавали люди окружающую реальную природу, тем больше убеждались: математизировать естествознание не так-то просто, а то и вообще невозможно. В начале XX века В.И. Вернадский писал: «Весьма часто приходится слышать убеждение, не соответствующее ходу научного развития, будто точное знание достигается лишь при получении математической формулы, лишь тогда, когда к объяснению явления и к его точному описанию могут быть приложены символы и построения математики… Но нет никаких оснований думать, что при дальнейшем развитии науки явления, доступные научному объяснению, подведутся под математические формулы или под так или иначе выраженные числовые правильные соотношения; нельзя думать, что в этом заключается конечная цель научной работы».
Во второй половине XX века некоторые ученые принялись переводить на язык математики геологию. Результаты были ничтожными. Методы статистики, обработки материалов и без того успешно используются в науках о Земле. Но поднять теорию геологии на более высокий уровень с помощью формул и уравнений не удалось.
Понятно стремление представителей разных областей знания перейти на единый язык математики. Так некогда в Европе языком науки признавали латынь. Ныне она сохранилась лишь в медицине, фармакологии, биологии. Была попытка выработать всемирный осреднённый диалект – эсперанто. Он не заменил ни один нормальный язык.
Математика универсальна. Это бесспорно. Одной и той же формулой можно выразить движение разных объектов: облака и дождинки, человека и червя, локомотива и камня, катящегося с горы. Хорошо это или плохо? Для некоторых целей – хорошо. Но только не для постижения реального мира во всей его полноте.