В недрах звезд, как правило, перенос энергии осуществляется посредством лучеиспускания. Это объясняется
Выше было получено основное соотношение «масса — светимость» из предположения, что перенос энергии в звездах осуществляется только путем лучеиспускания. Возникает вопрос: если в звезде имеет место также перенос энергии путем конвекции, не нарушится ли эта зависимость? Оказывается, нет! Дело в том, что «полностью конвективных звезд», т. е. таких звезд, у которых повсеместно, от центра до поверхности, перенос энергии осуществлялся бы только путем конвекции, в природе не существует. У реальных звезд имеются либо лишь более или менее тонкие слои, либо большие области в центре, где конвекция играет доминирующую роль. Но достаточно иметь хотя бы даже один слой внутри звезды, где бы перенос энергии осуществлялся лучеиспусканием, чтобы его непрозрачность самым радикальным образом отразилась бы на «пропускной способности» звезды по отношению к выделяющейся в ее недрах энергии. Однако наличие конвективных областей в недрах звезд, конечно, изменит численное значение коэффициентов в формуле (7.13). Это обстоятельство, в частности, является одной из причин, почему вычисленная нами по этой формуле светимость Солнца почти в пять раз превышает наблюдаемую.
Итак, по причине описанной выше специфической неустойчивости, в конвективных слоях звезд происходят крупномасштабные движения газа. Более нагретые массы газа подымаются снизу вверх, в то время как более холодные опускаются. Происходит интенсивный процесс перемешивания вещества. Расчеты показывают, однако, что разница в температуре движущихся элементов газа и окружающей среды совершенно ничтожна, всего лишь около 1 К — и это при температуре вещества недр порядка десяти миллионов кельвинов! Это объясняется тем, что сама конвекция стремится выравнивать температуру слоев. Средняя скорость поднимающихся и опускающихся газовых масс также незначительна — всего лишь порядка нескольких десятков метров в секунду. Полезно сравнить эту скорость с тепловыми скоростями ионизованных атомов водорода в недрах звезд, которые порядка нескольких сотен километров в секунду. Так как скорость движения газов, участвующих в конвекции, в десятки тысяч раз меньше тепловых скоростей частиц звездного вещества, то давление, вызываемое конвективными потоками, почти в миллиард раз меньше обычного газового давления. Это означает, что конвекция совершенно не влияет на гидростатическое равновесие вещества звездных недр, определяемое равенством сил газового давления и гравитации.
Не следует представлять себе конвекцию как некий упорядоченный процесс, где области подъема газа регулярно чередуются с областями его опускания. Характер конвективного движения не «ламинарный», а «турбулентный»; т. е. носит крайне хаотический, беспорядочно меняющийся во времени и пространстве характер. Хаотический характер движения газовых масс приводит к полному перемешиванию вещества. Это означает, что химический состав области звезды, охваченной конвективными движениями, должен быть однородным. Последнее обстоятельство имеет весьма большое значение для многих проблем звездной эволюции. Например, если в результате ядерных реакций в самой горячей (центральной) части конвективной зоны химический состав изменился (например, стало меньше водорода, часть которого превратилась в гелий), то за короткое время это изменение распространится на всю конвективную зону. Таким образом, в «зону ядерных реакций» — центральную область звезды — непрерывно может поступать «свежее» ядерное горячее, что имеет конечно, решающее значение для эволюции звезды[ 22 ]. В то же время вполне могут быть и такие ситуации, когда в центральных, самых горячих областях звезды конвекции нет, что приводит в процессе эволюции к радикальному изменению химического состава этих областей. Об этом более подробно будет идти речь в § 12.
Глава 8 Ядерные источники энергии излучения звезд
В § 3 мы уже говорили о том, что источниками энергии Солнца и звезд, обеспечивающими их светимость в течение гигантских «космогонических» промежутков времени, исчисляемых для звезд не слишком большой массы миллиардами лет, являются термоядерные реакции. Сейчас мы остановимся на этом важном вопросе более подробно.