Читаем Звезды: их рождение, жизнь и смерть полностью

где M — масса звезды, M = 2 1033 г — масса Солнца. С другой стороны, болометрическая светимость звезд с массой 20M достигает 1038 эрг/с (см. § 1). Следовательно, запаса ядерной энергии такой звезды хватит не больше, чем на 100 миллионов лет. В реальных условиях звездной эволюции время жизни звезды оказывается на порядок меньше этой явно завышенной оценки. Но десяток миллионов лет — это ничтожный срок для эволюции нашей звездной Галактики, возраст которой никак не меньше чем 10 миллиардов лет. Возраст массивных звезд уже соизмерим с возрастом человечества на Земле! Значит, звезды (по крайней мере, массивные с высокой светимостью) никак не могут быть в Галактике «изначально», т. е. с эпохи ее образования. Следовательно, процесс образования звезд идет перманентно. В следующих частях книги будет обсуждаться важнейший вопрос о «смерти» звезд, о конце их эволюционного пути. Оказывается, что ежегодно в Галактике «умирает» по меньшей мере 3—4 звезды. Значит, для того, чтобы «звездное племя» не «выродилось», необходимо, чтобы столько же звезд в среднем образовывалось в нашей Галактике каждый год. Для того чтобы в течение длительного времени (исчисляемого миллиардами лет) Галактика сохраняла бы неизменными свои основные особенности (например, распределение звезд по массам, или, что практически то же самое, по спектральным классам), необходимо чтобы в. ней автоматически поддерживалось динамическое равновесие между рождающимися и «гибнущими» звездами. В этом отношении Галактика похожа на первобытный лес, состоящий из деревьев всевозможных видов и возрастов, причем возраст деревьев гораздо меньше возраста леса. Имеется, правда, одно важное различие между Галактикой и лесом. В Галактике время жизни звезд с массой меньше солнечной превышает ее возраст, который составляет примерно 15 миллиардов лет. Поэтому следует ожидать постепенного увеличения числа звезд со сравнительно небольшой массой, так как они пока еще «не успели» умереть, а рождаться продолжают. Но для более массивных звезд упомянутое выше динамическое равновесие неизбежно должно выполняться.

Откуда же образуются в нашей Галактике молодые и «сверхмолодые» звезды? С давних пор, по установившейся традиции, восходящей к гипотезе Канта и Лапласа о происхождении Солнечной системы, астрономы предполагали, что звезды образуются из рассеянной диффузной газово-пылевой среды. Было только одно строгое теоретическое основание для такого убеждения — гравитационная неустойчивость первоначально однородной диффузной среды. Дело в том, что в такой среде неизбежны малые возмущения плотности, т. е. отклонения от строгой однородности. Под влиянием силы всемирного тяготения малые возмущения будут нарастать и первоначально однородная среда разобьется на несколько конденсаций. Под действием силы гравитации эти конденсации, если их масса превышает определенный предел, будут продолжать сжиматься и, как можно полагать, в конце концов превратятся в звезды.

Рассмотрим этот вопрос более подробно на одном частном, но важном примере, и сделаем количественную оценку. Положим, что у нас имеется некоторое облако радиуса R, плотность которого и радиус R постоянны. Условием того, что облако под действием собственной гравитации начнет сжиматься, является отрицательный знак полной энергии облака. Последняя состоит из отрицательной гравитационной энергии Wg взаимодействия всех частиц, образующих облако, и положительной тепловой энергии этих частиц WT . Отрицательный знак полной энергии означает, что силы гравитации, стремящиеся сжать облако, превосходят силы газового давления, стремящиеся рассеять это облако во всем окружающем пространстве. Далее имеем:

(3.2)

где A = 8,3 107 эрг/молькельвин,  — молекулярный вес,  — средняя плотность облака. В то же время гравитационная энергия

(3.3)

Мы видим, что WT при постоянной плотности облака и температуре T растет с ростом R как R3, в то время как WgR5, т.е. с ростом R растет гораздо быстрее. Следовательно, при данных и T существует такое R1, что при R > R1 облако под действием собственной гравитации неизбежно будет сжиматься. Когда задана масса M облака, R1 определится формулой

(3.4)

В этом случае (т. е., если заданы масса и температура облака), если размер облака R < R1, оно будет сжиматься.

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука